Transiting circumbinary planets Kepler-34 b and Kepler-35 b

Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a ‘circumbinary planet’ orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun’s mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

[1]  H. Abt Multiplicity of Solar-Type Stars , 1977 .

[2]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[3]  Astrophysics,et al.  The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry , 2011, 1106.4530.

[4]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[5]  P. Sybilski,et al.  Detecting circumbinary planets using eclipse timing of binary stars - numerical simulations , 2010, 1002.1857.

[6]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[7]  K. Blundell,et al.  The dynamics and stability of circumbinary orbits , 2011, 1108.4144.

[8]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[9]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[10]  Junichiro Makino,et al.  On a time-symmetric Hermite integrator for planetary N-body simulation , 1998 .

[11]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[12]  T. Mazeh,et al.  Photometric detection of non-transiting short-period low-mass companions through the beaming, ellipsoidal and reflection effects in Kepler and CoRoT light curves , 2011, 1106.2713.

[13]  Tsevi Mazeh,et al.  STUDY OF SPECTROSCOPIC BINARIES WITH TODCOR. I: A NEW TWO-DIMENSIONAL CORRELATION ALGORITHM TO DERIVE THE RADIAL VELOCITIES OF THE TWO COMPONENTS , 1994 .

[14]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[15]  P. Eggleton,et al.  An Empirical Condition for Stability of Hierarchical Triple Systems , 1995 .

[16]  A. Djupvik,et al.  The Nordic Optical Telescope , 2009, 0901.4015.

[17]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[18]  Jie Li,et al.  KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars , 2011, Science.

[19]  E. Ford,et al.  The First Kepler Mission Planet Confirmed With The Hobby-Eberly Telescope: Kepler-15b, a Hot Jupiter Enriched In Heavy Elements , 2011, 1107.2596.

[20]  Tsevi Mazeh,et al.  Detection of the ellipsoidal and the relativistic beaming effects in the CoRoT-3 lightcurve , 2010, 1008.3028.

[21]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[22]  Towards Better Age Estimates for Stellar Populations : The Y 2 Isochrones for Solar Mixture , 2001 .

[23]  Tel Aviv,et al.  Beaming Binaries: A New Observational Category of Photometric Binary Stars , 2007, 0708.2100.

[24]  Caltech,et al.  Extrasolar planet detection by binary stellar eclipse timing : evidence for a third body around CM Draconis , 2008, 0801.2186.

[25]  K. Menou,et al.  Atmospheric Circulation of Exoplanets , 2009, 0911.3170.

[26]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[27]  M. Chevreton,et al.  The photometric search for Earth-sized extrasolar planets by occultation in binary systems. , 1990 .

[28]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[29]  J. Silk,et al.  Dust Grains in a Hot Gas. Basic Physics , 1974 .

[30]  S. Faigler,et al.  SEVEN NEW BINARIES DISCOVERED IN THE KEPLER LIGHT CURVES THROUGH THE BEER METHOD CONFIRMED BY RADIAL-VELOCITY OBSERVATIONS , 2011, 1110.2133.

[31]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[32]  William F. Welsh,et al.  KEPLER ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE , 2011, 1103.1659.

[33]  M. Holman,et al.  The Value of Systems with Multiple Transiting Planets , 2010, 1006.3727.

[34]  Robert L. Kurucz,et al.  ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera , 2005 .

[35]  K. Schlaufman,et al.  EVIDENCE OF POSSIBLE SPIN–ORBIT MISALIGNMENT ALONG THE LINE OF SIGHT IN TRANSITING EXOPLANET SYSTEMS , 2010, 1006.2851.

[36]  A. Strom,et al.  MODELING THE SYSTEM PARAMETERS OF 2M 1533+3759: A NEW LONGER PERIOD LOW-MASS ECLIPSING sdB+dM BINARY , 2009, 0911.2006.

[37]  S. Eggl,et al.  Prospects of the detection of circumbinary planets with Kepler and CoRoT using the variations of eclipse timing , 2011, 1101.1994.

[38]  Robert G. Tull,et al.  High-resolution fiber-coupled spectrograph of the Hobby-Eberly Telescope , 1998, Astronomical Telescopes and Instrumentation.

[39]  Sara Seager,et al.  THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b , 2011, 1105.5143.

[40]  M. R. Haas,et al.  Kepler Mission Design, Realized Photometric Performance, and Early Science , 2010, 1001.0268.

[41]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[42]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[43]  J. Lissauer,et al.  Terrestrial planet formation surrounding close binary stars , 2006, astro-ph/0607222.

[44]  T. Mazeh Observational Evidence for Tidal Interaction in Close Binary Systems , 2007, 0801.0134.

[45]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[46]  R. Paul Butler,et al.  Radial Velocities for 889 Late-Type Stars , 2001, astro-ph/0112477.

[47]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[48]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[49]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[50]  Debra A. Fischer,et al.  Exoplanet properties from Lick, Keck and AAT , 2008 .

[51]  G. Furesz,et al.  HAT-P-16b: A 4 MJ PLANET TRANSITING A BRIGHT STAR ON AN ECCENTRIC ORBIT, , 2010, 1005.2009.

[52]  A. Gould,et al.  Kepler Mission Design , 2005 .

[53]  A. Loeb,et al.  Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions , 2003, astro-ph/0303212.