The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action

[1]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[2]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[3]  E. M. Wright Solution of the equation $ze^z = a$ , 1959 .

[4]  Antony Jameson,et al.  Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .

[5]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[6]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[7]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[8]  Harald K. Wimmer,et al.  On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.

[9]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[12]  R. Bellman,et al.  The Riccati Equation , 1986 .

[13]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[14]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[15]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[16]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[17]  Nicholas J. Higham,et al.  Perturbation Theory And Backward Error For , 1993 .

[18]  Nicholas J. Higham,et al.  Perturbation theory and backward error forAX−XB=C , 1993 .

[19]  M. Sadkane Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .

[20]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[21]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[22]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[23]  N. Kjurkchiev A note on the Le Verrier-Fadeev's method , 1996 .

[24]  Valeria Simoncini,et al.  Arnoldi-Riccati method for large eigenvalue problems , 1996 .

[25]  Shu-Fang Xu,et al.  Sensitivity analysis of the algebraic Riccati equations , 1996 .

[26]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[27]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[28]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[29]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[30]  Willis Lin,et al.  An inexact inverse iteration for large sparse eigenvalue problems , 1997 .

[31]  Wen-Wei Lin,et al.  An inexact inverse iteration for large sparse eigenvalue problems , 1997, Numer. Linear Algebra Appl..

[32]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[33]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[34]  Ji-guang Sun Perturbation Theory for Algebraic Riccati Equations , 1998, SIAM J. Matrix Anal. Appl..

[35]  Valeria Simoncini,et al.  Inexact Rayleigh quotient-type methods for subspace tracking , 1999 .

[36]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..

[37]  Vlad Ionescu,et al.  Generalized Riccati theory and robust control , 1999 .

[38]  Gerard L. G. Sleijpen,et al.  Effective preconditioning techniques for eigenvalue problems , 1999 .

[39]  P. Smit,et al.  THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .

[40]  Gerard L. G. Sleijpen,et al.  Using domain decomposition in the Jacobi­-Davidson method , 2000 .

[41]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[42]  D. Hu,et al.  Krylov-Subspace Methods for the Sylvester Equation , 2001 .

[43]  Jan Brandts,et al.  A Comparison of Subspace Methods for Sylvester Equations , 2001, LSSC.

[44]  Jan Brandts,et al.  Matlab Code for Sorted Real Schur Forms , 2001 .

[45]  J. H. Brandts,et al.  Matlab code for sorting real Schur forms , 2002, Numer. Linear Algebra Appl..

[46]  M. Sadkane,et al.  Riccati-based preconditioner for computing invariant subspaces of large matrices , 2002, Numerische Mathematik.

[47]  James Demmel,et al.  Three methods for refining estimates of invariant subspaces , 1987, Computing.