The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action
暂无分享,去创建一个
[1] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[2] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[3] E. M. Wright. Solution of the equation $ze^z = a$ , 1959 .
[4] Antony Jameson,et al. Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .
[5] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[6] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[7] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[8] Harald K. Wimmer,et al. On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.
[9] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] P. Lancaster,et al. Invariant subspaces of matrices with applications , 1986 .
[12] R. Bellman,et al. The Riccati Equation , 1986 .
[13] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[14] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[15] L. Reichel,et al. Krylov-subspace methods for the Sylvester equation , 1992 .
[16] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[17] Nicholas J. Higham,et al. Perturbation Theory And Backward Error For , 1993 .
[18] Nicholas J. Higham,et al. Perturbation theory and backward error forAX−XB=C , 1993 .
[19] M. Sadkane. Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .
[20] Bernard Philippe,et al. The Davidson Method , 1994, SIAM J. Sci. Comput..
[21] H. A. V. D. Vorsty. University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .
[22] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[23] N. Kjurkchiev. A note on the Le Verrier-Fadeev's method , 1996 .
[24] Valeria Simoncini,et al. Arnoldi-Riccati method for large eigenvalue problems , 1996 .
[25] Shu-Fang Xu,et al. Sensitivity analysis of the algebraic Riccati equations , 1996 .
[26] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[27] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[28] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[29] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .
[30] Willis Lin,et al. An inexact inverse iteration for large sparse eigenvalue problems , 1997 .
[31] Wen-Wei Lin,et al. An inexact inverse iteration for large sparse eigenvalue problems , 1997, Numer. Linear Algebra Appl..
[32] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[33] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[34] Ji-guang Sun. Perturbation Theory for Algebraic Riccati Equations , 1998, SIAM J. Matrix Anal. Appl..
[35] Valeria Simoncini,et al. Inexact Rayleigh quotient-type methods for subspace tracking , 1999 .
[36] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..
[37] Vlad Ionescu,et al. Generalized Riccati theory and robust control , 1999 .
[38] Gerard L. G. Sleijpen,et al. Effective preconditioning techniques for eigenvalue problems , 1999 .
[39] P. Smit,et al. THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .
[40] Gerard L. G. Sleijpen,et al. Using domain decomposition in the Jacobi-Davidson method , 2000 .
[41] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[42] D. Hu,et al. Krylov-Subspace Methods for the Sylvester Equation , 2001 .
[43] Jan Brandts,et al. A Comparison of Subspace Methods for Sylvester Equations , 2001, LSSC.
[44] Jan Brandts,et al. Matlab Code for Sorted Real Schur Forms , 2001 .
[45] J. H. Brandts,et al. Matlab code for sorting real Schur forms , 2002, Numer. Linear Algebra Appl..
[46] M. Sadkane,et al. Riccati-based preconditioner for computing invariant subspaces of large matrices , 2002, Numerische Mathematik.
[47] James Demmel,et al. Three methods for refining estimates of invariant subspaces , 1987, Computing.