An iterative algorithm for the computation of the MVDR filter

Statistical conditional optimization criteria lead to the development of an iterative algorithm that starts from the matched filter (or constraint vector) and generates a sequence of filters that converges to the minimum-variance-distortionless-response (MVDR) solution for any positive definite input autocorrelation matrix. Computationally, the algorithm is a simple, noninvasive, recursive procedure that avoids any form of explicit autocorrelation matrix inversion, decomposition, or diagonalization. Theoretical analysis reveals basic properties of the algorithm and establishes formal convergence. When the input autocorrelation matrix is replaced by a conventional sample-average (positive definite) estimate, the algorithm effectively generates a sequence of MVDR filter estimators; the bias converges rapidly to zero and the covariance trace rises slowly and asymptotically to the covariance trace of the familiar sample-matrix-inversion (SMI) estimator. In fact, formal convergence of the estimator sequence to the SMI estimate is established. However, for short data records, it is the early, nonasymptotic elements of the generated sequence of estimators that offer favorable bias covariance balance and are seen to outperform in mean-square estimation error, constraint-LMS, RLS-type, orthogonal multistage decomposition, as well as plain and diagonally loaded SMI estimates. An illustrative interference suppression example is followed throughout this presentation.

[1]  B. Widrow,et al.  Adaptive antenna systems , 1967 .

[2]  Gary J. Saulnier,et al.  An adaptive correlator receiver for direct-sequence spread-spectrum communication , 1996, IEEE Trans. Commun..

[3]  B. D. Veen Eigenstructure based partially adaptive array design , 1988 .

[4]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[5]  Rajesh Sharma,et al.  Large modular structures for adaptive beamforming and the Gram-Schmidt preprocessor , 1994, IEEE Trans. Signal Process..

[6]  Barry D. Van Veen,et al.  Partially adaptive beamformer design via output power minimization , 1987, IEEE Trans. Acoust. Speech Signal Process..

[7]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[8]  N. L. Owsley Data orthogonalization in sensor array signal processing , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.

[9]  Allan O. Steinhardt The PDF of adaptive beamforming weights , 1991, IEEE Trans. Signal Process..

[10]  Dimitris A. Pados,et al.  Low-complexity blind detection of DS/CDMA signals: auxiliary-vector receivers , 1997, IEEE Trans. Commun..

[11]  K. A. Byerly,et al.  Output power based partial adaptive array design , 1989, Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989..

[12]  Victor Solo,et al.  The limiting behavior of LMS , 1989, IEEE Trans. Acoust. Speech Signal Process..

[13]  David G. Long,et al.  Array signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[14]  R. Dykstra Establishing the Positive Definiteness of the Sample Covariance Matrix , 1970 .

[15]  P. Howells,et al.  Explorations in fixed and adaptive resolution at GE and SURC , 1976 .

[16]  Antonio Cantoni,et al.  Analysis of constrained LMS algorithm with application to adaptive beamforming using perturbation sequences , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  Dimitris A. Pados,et al.  Adaptive maximum SINR RAKE filtering for DS-CDMA multipath fading channels , 1998, IEEE J. Sel. Areas Commun..

[18]  Christ D. Richmond,et al.  Derived PDF of maximum likelihood signal estimator which employs an estimated noise covariance , 1996, IEEE Trans. Signal Process..

[19]  Dimitris A. Pados,et al.  Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays , 1999, IEEE Trans. Commun..

[20]  Dimitris A. Pados,et al.  Joint domain space-time adaptive processing with small training data sets , 1998, Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197).

[21]  T. Kailath,et al.  Fast, recursive-least-squares transversal filters for adaptive filtering , 1984 .

[22]  S. Applebaum,et al.  Adaptive arrays with main beam constraints , 1976 .

[23]  Alexander M. Haimovich,et al.  An eigenanalysis interference canceler , 1991, IEEE Trans. Signal Process..

[24]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[25]  John K. Thomas,et al.  Wiener filters in canonical coordinates for transform coding, filtering, and quantizing , 1998, IEEE Trans. Signal Process..

[26]  Upamanyu Madhow,et al.  Blind adaptive multiuser detection , 1995, IEEE Trans. Inf. Theory.

[27]  Craig K. Rushforth,et al.  A Family of Suboptimum Detectors for Coherent Multiuser Communications , 1990, IEEE J. Sel. Areas Commun..

[28]  R. Kumaresan,et al.  Data-Adaptive Detection of a Weak Signal , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Stella N. Batalama,et al.  Data-record-based criteria for the selection of an auxiliary-vector estimator of the MVDR filter , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[30]  Donald W. Tufts,et al.  Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies , 1986, IEEE Trans. Acoust. Speech Signal Process..

[31]  Branka Vucetic,et al.  Adaptive receiver structures for asynchronous CDMA systems , 1994, IEEE J. Sel. Areas Commun..

[32]  E. Robinson,et al.  Recursive solution to the multichannel filtering problem , 1965 .

[33]  L. J. Griffiths,et al.  A simple adaptive algorithm for real-time processing in antenna arrays , 1969 .

[34]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..

[35]  B. Carlson Covariance matrix estimation errors and diagonal loading in adaptive arrays , 1988 .

[36]  Barry D. Van Veen,et al.  A modular structure for implementation of linearly constrained minimum variance beamformers , 1991, IEEE Trans. Signal Process..

[37]  Christ D. Richmond PDF's, confidence regions, and relevant statistics for a class of sample covariance-based array processors , 1996, IEEE Trans. Signal Process..

[38]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[39]  J. Scott Goldstein,et al.  Reduced-rank adaptive filtering , 1997, IEEE Trans. Signal Process..

[40]  Louis L. Scharf,et al.  A Multistage Representation of the Wiener Filter Based on Orthogonal Projections , 1998, IEEE Trans. Inf. Theory.

[41]  Louis L. Scharf,et al.  Rank reduction for modeling stationary signals , 1987, IEEE Trans. Acoust. Speech Signal Process..

[42]  R. Plackett Some theorems in least squares. , 1950, Biometrika.

[43]  L. J. Griffiths,et al.  An alternative approach to linearly constrained adaptive beamforming , 1982 .

[44]  Scott L. Miller An adaptive direct-sequence code-division multiple-access receiver for multiuser interference rejection , 1995, IEEE Trans. Commun..

[45]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[46]  I. S. Reed,et al.  A multistage STAP CFAR detection technique , 1998, Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197).

[47]  Avinash C. Kak,et al.  Array signal processing , 1985 .