Adaptable Orthopedic Shape Memory Implants

[1]  V. Wesling,et al.  Noninvasive induction implant heating: an approach for contactless altering of mechanical properties of shape memory implants. , 2013, Medical engineering & physics.

[2]  S. Barcikowski,et al.  A Preliminary Study of Bending Stiffness Alteration in Shape Changing Nitinol Plates for Fracture Fixation , 2011, Annals of Biomedical Engineering.

[3]  C. Haasper,et al.  Electromagnetic induction heating of an orthopaedic nickel–titanium shape memory device , 2010, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[4]  S. Barcikowski,et al.  Pulsed Nd:YAG laser cutting of NiTi shape memory alloys—Influence of process parameters , 2010 .

[5]  Michael Bottlang,et al.  Far cortical locking can improve healing of fractures stabilized with locking plates. , 2010, The Journal of bone and joint surgery. American volume.

[6]  Yong S. Chu,et al.  Identification of Quaternary Shape Memory Alloys with Near‐Zero Thermal Hysteresis and Unprecedented Functional Stability , 2010 .

[7]  Rainer Burgkart,et al.  The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness , 2010, Langenbeck's Archives of Surgery.

[8]  Jan Bartoníček,et al.  Early history of operative treatment of fractures , 2010, Archives of Orthopaedic and Trauma Surgery.

[9]  C. Berceanu,et al.  In vitro experiment of the modular orthopedic plate based on Nitinol, used for human radius bone fractures. , 2010, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[10]  S. W. Robertson,et al.  Fatigue and durability of Nitinol stents. , 2008, Journal of the mechanical behavior of biomedical materials.

[11]  M. Epple,et al.  The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation. , 2007, Journal of biomedical materials research. Part A.

[12]  V. Brailovski,et al.  Interrelations between the properties and structure of thermomechanically-treated equiatomic Ti–Ni alloy , 2006 .

[13]  T. Yue,et al.  Theoretical and experimental study on the kerf profile of the laser micro-cutting NiTi shape memory alloy using 355 nm Nd:YAG , 2005 .

[14]  Mohammed Es-Souni,et al.  Assessing the biocompatibility of NiTi shape memory alloys used for medical applications , 2005, Analytical and bioanalytical chemistry.

[15]  J. Usón,et al.  Design, manufacture and evaluation of a NiTi stent for colon obstruction. , 2005, Bio-medical materials and engineering.

[16]  Han Huang,et al.  Femtosecond laser machining characteristics of Nitinol , 2004 .

[17]  D. Lieberman,et al.  The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone. , 2004, American journal of physical anthropology.

[18]  D. Mantovani,et al.  Shape Memory Materials for Biomedical Applications , 2002 .

[19]  Tomoyuki Kakeshita,et al.  Science and Technology of Shape-Memory Alloys: New Developments , 2002 .

[20]  A Kapanen,et al.  Effect of nickel-titanium shape memory metal alloy on bone formation. , 2001, Biomaterials.

[21]  Y. Chen,et al.  A study on the machining characteristics of TiNi shape memory alloys , 2000 .

[22]  A. Pelton,et al.  Medical Uses of Nitinol , 2000 .

[23]  R. Winkel,et al.  NITINOL-Klammern zur Kompressionsosteosynthese des Kahnbeins , 1999, Trauma und Berufskrankheit.

[24]  Wei Min Huang,et al.  Modified Shape Memory Alloy (SMA) Model for SMA Wire Based Actuator Design , 1999 .

[25]  Electromagnetic heating of a shape memory alloy translator , 1996 .

[26]  K. Dai,et al.  Application of a NiTi staple in the metatarsal osteotomy. , 1996, Bio-medical materials and engineering.

[27]  P Augat,et al.  Effect of dynamization on gap healing of diaphyseal fractures under external fixation. , 1995, Clinical biomechanics.