FAST TOTAL VARIATION WAVELET INPAINTING VIA APPROXIMATED PRIMAL-DUAL HYBRID GRADIENT ALGORITHM

The primal-dual hybrid gradient (PDHG) algorithm has been successfully applied to a number of total variation (TV) based image reconstruction problems for fast numerical solutions. We show that PDHG can also effectively solve the computational problem of image inpainting in wavelet domain, where high quality images are to be recovered from incomplete wavelet coefficients due to lossy data transmission. In particular, as the original PDHG algorithm requires the orthogonality of encoding operators for optimal performance, we propose an approximated PDHG algorithm to tackle the non-orthogonality of Daubechies 7-9 wavelet which is widely used in practice. We show that this approximated version essentially alters the gradient descent direction in the original PDHG algorithm, but eliminates its orthogonality restriction and retains low computation complexity. Moreover, we prove that the sequences generated by the approximated PDHG algorithm always converge monotonically to an exact solution of the TV based image reconstruction problem starting from any initial guess. We demonstrate that the approximated PDHG algorithm also works on more general image reconstruction problems with total variation regularizations, and analyze the condition on the step sizes that guarantees the convergence.

[1]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[2]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[3]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[4]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[5]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[6]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[7]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[8]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[9]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[10]  Raymond H. Chan,et al.  A Fast Optimization Transfer Algorithm for Image Inpainting in Wavelet Domains , 2009, IEEE Transactions on Image Processing.

[11]  Raymond H. Chan,et al.  Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..

[12]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[13]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[14]  Xiaoqun Zhang,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for TV Minimization , 2009 .

[15]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[16]  William W. Hager,et al.  Fast Algorithms for Image Reconstruction with Application to Partially Parallel MR Imaging , 2012, SIAM J. Imaging Sci..

[17]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[18]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[19]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[20]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[21]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[22]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[23]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[24]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[25]  Yunmei Chen,et al.  Computational Acceleration for MR Image Reconstruction in Partially Parallel Imaging , 2011, IEEE Transactions on Medical Imaging.

[26]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  Wei Lin,et al.  Fast MR Image Reconstruction for Partially Parallel Imaging With Arbitrary $k$ -Space Trajectories , 2011, IEEE Transactions on Medical Imaging.

[28]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[29]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[30]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[31]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[32]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[33]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[34]  Raymond H. Chan,et al.  A Primal–Dual Method for Total-Variation-Based Wavelet Domain Inpainting , 2012, IEEE Transactions on Image Processing.

[35]  Lin He,et al.  Cahn--Hilliard Inpainting and a Generalization for Grayvalue Images , 2009, SIAM J. Imaging Sci..

[36]  T. Chan,et al.  WAVELET INPAINTING BY NONLOCAL TOTAL VARIATION , 2010 .

[37]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[38]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[39]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[40]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[41]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[42]  Jian-Feng Cai,et al.  Inpainting for Compressed Images , 2010 .

[43]  J. Koko,et al.  An Augmented Lagrangian Method for , 2010 .

[44]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[45]  Junfeng Yang,et al.  A Fast TVL1-L2 Minimization Algorithm for Signal Reconstruction from Partial Fourier Data , 2008 .

[46]  G. F. Roach,et al.  Inverse problems and imaging , 1991 .

[47]  A. Chambolle,et al.  An introduction to Total Variation for Image Analysis , 2009 .