Infinite Global Fields and the Generalized Brauer-Siegel Theorem

The paper has two purposes. First, we start to develop a theory of infinite global fields, i.e., of infinite algebraic extensions either of Q or of Fr(t). We produce a series of invariants of such fields, and we introduce and study a kind of zeta-function for them. Second, for sequences of number fields with growing discriminant we prove generalizations of the Odlyzko-Serre bounds and of the Brauer-Siegel theorem, taking into account non-archimedean places. This leads to asymptotic bounds on the ratio log hR/log p |D| valid without the standard assumption n/log p |D| → 0, thus including, in particular, the case of unramified towers. Then we produce examples of class field towers, showing that this assumption is indeed necessary for the Brauer-Siegel theorem to hold. As an easy consequence we ameliorate on existing bounds for regulators.

[1]  Farshid Hajir,et al.  Tamely Ramified Towers and Discriminant Bounds for Number Fields , 2001, Compositio Mathematica.

[2]  R. Schoof,et al.  Effectivity of Arakelov divisors and the theta divisor of a number field , 1998, math/9802121.

[3]  M. Tsfasman,et al.  Asymptotic properties of zeta-functions , 1997 .

[4]  W. Narkiewicz Global Class-Field Theory , 1996 .

[5]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[6]  R. Schoof,et al.  Algebraic curves over F2 with many rational points , 1992 .

[7]  Marc Perret,et al.  Tours ramifiées infinies de corps de classes , 1991 .

[8]  Eduardo Friedman,et al.  Analytic formulas for the regulator of a number field , 1989 .

[9]  K. Yamamura On infinite unramified Galois extensions of algebraic number fields with many primes decomposing almost completely , 1986 .

[10]  Th. Zink,et al.  Degeneration of Shimura surfaces and a problem in coding theory , 1985, FCT.

[11]  Y. Ihara,et al.  How many primes decompose completely in an infinite unramified Galois extension of a global field , 1983 .

[12]  Y. Ihara,et al.  Some remarks on the number of rational points of algebratic curves over finite fields , 1982 .

[13]  Rainer Zimmert,et al.  Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , 1980 .

[14]  J. Hoffstein Some analytic bounds for zeta functions and class numbers , 1979 .

[15]  Jacques Martinet,et al.  Tours de corps de classes et estimations de discriminants , 1978 .

[16]  H. M. Stark,et al.  Some effective cases of the Brauer-Siegel Theorem , 1974 .

[17]  H. Heilbronn On Real Zeros of Dedekind ζ-Functions , 1973, Canadian Journal of Mathematics.

[18]  S. Lang On the zeta function of number fields , 1971 .

[19]  R. Brauer On the Zeta-Functions of Algebraic Number Fields II , 1950 .

[20]  R. Brauer On the Zeta-Functions of Algebraic Number Fields , 1947 .

[21]  Sami Omar Majoration du premier zéro de la fonction zêta de Dedekind , 2000 .

[22]  Jean-Pierre Serre Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p: Journal A.M.S. 10 (1997), 75–102 , 2000 .

[23]  S. Vladuts SC: Secant Spaces and Clifford's Theorem over Finite Fields , 1998 .

[24]  Jean-Pierre Serre,et al.  Répartition asymptotique des valeurs propres de l’opérateur de Hecke _ , 1997 .

[25]  Christian Maire,et al.  Finitude de tours et p-tours T-ramifiées modérées, S-décomposées , 1996 .

[26]  Vijaya Kumar Murty,et al.  EFFECTIVE VERSIONS OF THE CHEBOTAREV DENSITY THEOREM FOR FUNCTION FIELDS , 1994 .

[27]  A. Kolmogorov,et al.  Éléments de la théorie des fonctions et de l'analyse fonctionnelle , 1994 .

[28]  M. A. Tsfasman,et al.  Some remarks on the asymptotic number of points , 1992 .

[29]  Gerhard Frey,et al.  On the different of abelian extensions of global fields , 1992 .

[30]  M. Coppens,et al.  Secant spaces and Clifford's theorem , 1991 .

[31]  Andrew Odlyzko,et al.  Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results , 1990 .

[32]  R. Schoof Infinite class field towers of quadratic fields. , 1986 .

[33]  M. Wodzicki Lecture Notes in Math , 1984 .

[34]  Jean-Pierre Serre,et al.  Nombres de points des courbes algébriques sur F ... , 1983 .

[35]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[36]  Georges Poitou,et al.  Sur les petits discriminants , 1977 .

[37]  A. Odlyzko Lower bounds for discriminants of number fields , 1976 .

[38]  L. Schwartz Théorie des distributions , 1966 .

[39]  C. Siegel,et al.  Über die Classenzahl quadratischer Zahlkörper , 1935 .