Regularity conditions for control problem with descriptor systems

We present a practical method for solving the measurement feedback control problems with a desriptor standard control structure (SCS) through their transformation into problems with a state-space (SCS). We motivate by an example and define regularity conditions for descriptor SCS, and prove that the original descriptor SCS is regular if and only if the transformed by our algorithm state-space SCS is regular. The elaborated overall method for finding optimal controllers for descriptor systems simplifies all existing methods. Numerical examples are given, which illustrate the paper’s results.

[1]  Pascal Gahinet Reliable computation of H∞ central controllers near the optimum , 1992, 1992 American Control Conference.

[2]  K. Takaba,et al.  H_∞ control for descriptor systems:A J-spectral factorization approach , 1994 .

[3]  Kiyotsugu Takaba,et al.  H2 Output Feedback Control for Descriptor Systems , 1998, Autom..

[4]  Izumi Masubuchi Output feedback controller synthesis for descriptor systems satisfying closed-loop dissipativity , 2007, Autom..

[5]  Mohamed Yagoubi,et al.  Robust Control of Linear Descriptor Systems , 2017 .

[6]  Masaki Inoue,et al.  State-space H∞ controller design for descriptor systems , 2015, Autom..

[7]  Masahiro Kaneda,et al.  Reduced-order proper H∞ controllers for descriptor systems: Existence conditions and LMI-based design algorithms , 2008, 2007 46th IEEE Conference on Decision and Control.

[8]  Huibert Kwakernaak,et al.  Frequency domain solution of the H problem for descriptor systems , 1999 .

[9]  Jovan D. Stefanovski ℋ∞ Problem with Nonstrict Inequality and All Solutions: Interpolation Approach , 2015, SIAM J. Control. Optim..

[10]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[11]  Peter Benner,et al.  Robust formulas for optimal H∞ controllers , 2011, Autom..

[12]  D. Luenberger Dynamic equations in descriptor form , 1977 .

[13]  João Yoshiyuki Ishihara,et al.  Impulse controllability and observability of rectangular descriptor systems , 2001, IEEE Trans. Autom. Control..

[15]  P. Müller Descriptor systems: pros and cons of system modelling by differential-algebraic equations , 2000 .

[16]  V. Mehrmann,et al.  THE MODIFIED OPTIMAL H∞ CONTROL PROBLEM FOR DESCRIPTOR SYSTEMS , 2009 .

[17]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[18]  Vladimír Kucera The H2 control problem: a general transfer-function solution , 2007, Int. J. Control.

[19]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[20]  Georgi M. Dimirovski,et al.  A descriptor system approach to robust H∞ control for linear systems with time-varying uncertainties , 2009, Int. J. Syst. Sci..