Parallel domain decomposition procedures of improved D-D type for parabolic problems

Two parallel domain decomposition procedures for solving initial-boundary value problems of parabolic partial differential equations are proposed. One is the extended D-D type algorithm, which extends the explicit/implicit conservative Galerkin domain decomposition procedures, given in [5], from a rectangle domain and its decomposition that consisted of a stripe of sub-rectangles into a general domain and its general decomposition with a net-like structure. An almost optimal error estimate, without the factor H^-^1^/^2 given in Dawson-Dupont's error estimate, is proved. Another is the parallel domain decomposition algorithm of improved D-D type, in which an additional term is introduced to produce an approximation of an optimal error accuracy in L^2-norm.

[1]  羊丹平,et al.  SCHWARZ TYPE DOMAIN DECOMPOSITION ALGORITHMS FOR PARABOLIC EQUATIONS AND ERROR ESTIMATES , 1998 .

[2]  Xuemin Tu,et al.  A domain decomposition discretization of parabolic problems , 2007, Numerische Mathematik.

[3]  Richard E. Ewing,et al.  Domain decomposition type iterative techniques for parabolic problems on locally refined grids , 1993 .

[4]  Eun-Jae Park,et al.  Mixed finite element domain decomposition for nonlinear parabolic problems , 2000 .

[5]  Hongxing Rui Multiplicative Schwarz methods for parabolic problems , 2003, Appl. Math. Comput..

[6]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[7]  Rui Hongxing,et al.  Schwarz type domain decomposition algorithms for parabolic equations and error estimates , 1998 .

[8]  S. V. Gololobov,et al.  Explicit-implicit domain decomposition methods for solving parabolic equations , 1995 .

[9]  F. K. Hebeker,et al.  Unsteady convection and convection-diffusion problems via direct overlapping domain decomposition methods , 1998 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Danping Yang,et al.  Additive Schwarz methods for parabolic problems , 2005, Appl. Math. Comput..

[12]  Roland Glowinski,et al.  A domain decomposition and mixed method for a linear parabolic boundary value problem , 2004 .

[13]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[14]  Herbert B. Keller,et al.  Space-time domain decomposition for parabolic problems , 2002, Numerische Mathematik.

[15]  Rolf Rannacher,et al.  A domain splitting algorithm for parabolic problems , 1992, Computing.

[16]  Clint Dawson,et al.  Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences , 1994 .

[17]  Qiang Du,et al.  Efficient Parallel Algorithms for Parabolic Problems , 2001, SIAM J. Numer. Anal..

[18]  T. Dupont,et al.  A Finite Difference Domain Decomposition Algorithm for Numerical Solution of the Heat Equation , 1989 .

[19]  Xiao-Chuan Cai,et al.  Additive Schwarz algorithms for parabolic convection-diffusion equations , 1991 .

[20]  Xue-Cheng Tai,et al.  A Space Decomposition Method for Parabolic Equations , 1998 .

[21]  Gert Lube,et al.  A non-overlapping domain decomposition method for parabolic initial-boundary value problems , 1998 .

[22]  Xian-He Sun,et al.  Stabilized Explicit-Implicit Domain Decomposition Methods for the Numerical Solution of Parabolic Equations , 2002, SIAM J. Sci. Comput..

[23]  G. Meurant A domain decomposition method for parabolic problems , 1991 .

[24]  Clint Dawson,et al.  Explicit-/implicit conservative Galerkin domain decomposition procedures for parabolic problems , 1992 .

[25]  Junping Wang,et al.  Domain Decomposition Operator Splittings for the Solution of Parabolic Equations , 1998, SIAM J. Sci. Comput..

[26]  J. Mandel,et al.  Energy optimization of algebraic multigrid bases , 1999 .