Paucity of Genes on the Drosophila X Chromosome Showing Male-Biased Expression

Sex chromosomes are primary determinants of sexual dimorphism in many organisms. These chromosomes are thought to arise via the divergence of an ancestral autosome pair and are almost certainly influenced by differing selection in males and females. Exploring how sex chromosomes differ from autosomes is highly amenable to genomic analysis. We examined global gene expression inDrosophila melanogaster and report a dramatic underrepresentation of X-chromosome genes showing high relative expression in males. Using comparative genomics, we find that these same X-chromosome genes are exceptionally poorly conserved in the mosquito Anopheles gambiae. These data indicate that the X chromosome is a disfavored location for genes selectively expressed in males.

[1]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[2]  B. S. Baker,et al.  Dosage compensation in Drosophila. , 1994, Annual review of genetics.

[3]  A. Clark,et al.  Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Kevin R. Thornton,et al.  Retroposed new genes out of the X in Drosophila. , 2002, Genome research.

[5]  D. Lindsley,et al.  The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Strome,et al.  Regulation of the Different Chromatin States of Autosomes and X Chromosomes in the Germ Line of C. elegans , 2002, Science.

[7]  G. Bouffard,et al.  Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. , 2000, Genome research.

[8]  W. Rice SEX CHROMOSOMES AND THE EVOLUTION OF SEXUAL DIMORPHISM , 1984, Evolution; international journal of organic evolution.

[9]  B. S. Baker,et al.  Gene Expression During the Life Cycle of Drosophila melanogaster , 2002, Science.

[10]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[11]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[12]  Brian Oliver,et al.  Genetic control of germline sexual dimorphism in Drosophila. , 2002, International review of cytology.

[13]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[14]  V. Reinke,et al.  A global profile of germline gene expression in C. elegans. , 2000, Molecular cell.

[15]  G M Rubin,et al.  A Drosophila complementary DNA resource. , 2000, Science.

[16]  Gerald J. Wyckoff,et al.  Rapid evolution of male reproductive genes in the descent of man , 2000, Nature.

[17]  Russell D. Wolfinger,et al.  The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster , 2001, Nature Genetics.

[18]  M. Kuroda,et al.  An analysis of maleless and histone H4 acetylation in Drosophila melanogaster spermatogenesis , 1998, Mechanisms of Development.

[19]  W. G. Kelly,et al.  X-chromosome silencing in the germline of C. elegans. , 2002, Development.

[20]  Fang Yang,et al.  An abundance of X-linked genes expressed in spermatogonia , 2001, Nature Genetics.