A road towards 25% efficiency and beyond: perovskite tandem solar cells
暂无分享,去创建一个
[1] T. Minami. Transparent conducting oxide semiconductors for transparent electrodes , 2005 .
[2] M. Johnston,et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .
[3] Yang Yang,et al. A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.
[4] John R. Reynolds,et al. Transparent, Conductive Carbon Nanotube Films , 2004, Science.
[5] Eric T. Hoke,et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.
[6] Rebecca A. Belisle,et al. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.
[7] N. Park,et al. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system , 2015 .
[8] S. Guha,et al. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .
[9] Michael Grätzel,et al. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency , 2006 .
[10] C. Breyer,et al. Global overview on grid‐parity , 2013 .
[11] B. Dimmler,et al. Monolithic hybrid tandem solar cells comprising copper indium gallium diselenide and organic subcells , 2013 .
[12] A. D. Vos,et al. Detailed balance limit of the efficiency of tandem solar cells , 1980 .
[13] Brian E. McCandless,et al. Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .
[14] W. Warta,et al. Solar cell efficiency tables (Version 45) , 2015 .
[15] Alberto Salleo,et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .
[16] Henry J. Snaith,et al. Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.
[17] Young Chan Kim,et al. Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.
[18] Yang Yang,et al. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.
[19] T. Wada,et al. Tandem solar cells with Cu(In,Ga)S2 top cells on ZnO coated substrates , 2010 .
[20] Kentaro Ito,et al. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells: Ito/Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells , 2014 .
[21] Anders Hagfeldt,et al. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.
[22] Michael D. McGehee,et al. High-efficiency tandem perovskite solar cells , 2015 .
[23] Huiqiong Zhou,et al. Polymer Homo‐Tandem Solar Cells with Best Efficiency of 11.3% , 2015, Advanced materials.
[24] O. Gunawan,et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .
[25] Wei Zhang,et al. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.
[26] K. Müllen,et al. Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.
[27] B. Rech,et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .
[28] Zaifang Li,et al. A two-terminal perovskite/perovskite tandem solar cell , 2016 .
[29] Antonio Luque,et al. Handbook of photovoltaic science and engineering , 2011 .
[30] Jürgen H. Werner,et al. Radiative efficiency limits of solar cells with lateral band-gap fluctuations , 2004 .
[31] C. S. Fuller,et al. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .
[32] A. Tiwari,et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.
[33] Supratik Guha,et al. Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .
[34] Husnu Emrah Unalan,et al. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells , 2005 .
[35] Bernd Rech,et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.
[36] Yang Yang,et al. An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.
[37] C. Ballif,et al. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.
[38] H. Queisser,et al. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .
[39] Srinivas Sista,et al. High‐Efficiency Polymer Tandem Solar Cells with Three‐Terminal Structure , 2010, Advanced materials.
[40] Susanne Siebentritt,et al. A stacked chalcopyrite thin‐film tandem solar cell with 1.2 V open‐circuit voltage , 2003 .
[41] T. Emrick,et al. High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. , 2016, ACS applied materials & interfaces.
[42] Chun-Chieh Lin,et al. Three-Terminal Amorphous Silicon Solar Cells , 2011 .
[43] Jonathan P. Mailoa,et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .
[44] M. Grätzel,et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.