A road towards 25% efficiency and beyond: perovskite tandem solar cells

For decades, the appealing potential of tandem solar cells for efficiencies beyond the single-junction Shockley–Queisser limit has led researchers to develop thin film tandem solutions for high performance low cost solar cells. Perovskite solar cells have recently emerged as a promising candidate for photovoltaics. In addition to ease of fabrication and good efficiencies, a particularly attractive feature is their tunable band gap between 1.48 and 2.3 eV that enables symbiosis with other solar cells in tandem device configurations. The low-temperature processing conditions of perovskites make it possible to monolithically integrate them as the top component of tandem structures without damaging the bottom cell. Early experimental results and modelling indicate that efficiencies beyond 25% are within reach. Optimization and solving perovskite stability limitations could result in a commercially viable technology. We review recent developments and insights in the field.

[1]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[2]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[3]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[4]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[5]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[6]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[7]  N. Park,et al.  High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system , 2015 .

[8]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[9]  Michael Grätzel,et al.  Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency , 2006 .

[10]  C. Breyer,et al.  Global overview on grid‐parity , 2013 .

[11]  B. Dimmler,et al.  Monolithic hybrid tandem solar cells comprising copper indium gallium diselenide and organic subcells , 2013 .

[12]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[13]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[14]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[15]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[16]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[17]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[18]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[19]  T. Wada,et al.  Tandem solar cells with Cu(In,Ga)S2 top cells on ZnO coated substrates , 2010 .

[20]  Kentaro Ito,et al.  Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells: Ito/Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells , 2014 .

[21]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[22]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[23]  Huiqiong Zhou,et al.  Polymer Homo‐Tandem Solar Cells with Best Efficiency of 11.3% , 2015, Advanced materials.

[24]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[25]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[26]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[27]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[28]  Zaifang Li,et al.  A two-terminal perovskite/perovskite tandem solar cell , 2016 .

[29]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[30]  Jürgen H. Werner,et al.  Radiative efficiency limits of solar cells with lateral band-gap fluctuations , 2004 .

[31]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[32]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[33]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[34]  Husnu Emrah Unalan,et al.  Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells , 2005 .

[35]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[36]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[37]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[38]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[39]  Srinivas Sista,et al.  High‐Efficiency Polymer Tandem Solar Cells with Three‐Terminal Structure , 2010, Advanced materials.

[40]  Susanne Siebentritt,et al.  A stacked chalcopyrite thin‐film tandem solar cell with 1.2 V open‐circuit voltage , 2003 .

[41]  T. Emrick,et al.  High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. , 2016, ACS applied materials & interfaces.

[42]  Chun-Chieh Lin,et al.  Three-Terminal Amorphous Silicon Solar Cells , 2011 .

[43]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[44]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.