A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

[1]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[2]  R. Calabrese,et al.  Heartbeat control in leeches. II. Fictive motor pattern. , 2004, Journal of neurophysiology.

[3]  M. Siddall,et al.  Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis , 2007, Proceedings of the Royal Society B: Biological Sciences.

[4]  Jan-Peter Hildebrandt,et al.  Circulation in the Leech, Hirudo Medicinalis L , 1988 .

[5]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[6]  R. Calabrese,et al.  Motor pattern switching in the heartbeat pattern generator of the medicinal leech: membrane properties and lack of synaptic interaction in switch interneurons , 1999, Journal of Comparative Physiology A.

[7]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[8]  Eve Marder,et al.  Animal-to-Animal Variability in Motor Pattern Production in Adults and during Growth , 2005, The Journal of Neuroscience.

[9]  J. Lu,et al.  A Model of a Segmental Oscillator in the Leech Heartbeat Neuronal Network , 2001, Journal of Computational Neuroscience.

[10]  R. Calabrese,et al.  The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medicinalis. , 1979, The Journal of experimental biology.

[11]  Ronald L Calabrese,et al.  Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals. , 2004, Journal of neurophysiology.

[12]  R. Calabrese,et al.  Neural control of heartbeat in the leech, Hirudo medicinalis. , 1983, Symposia of the Society for Experimental Biology.

[13]  R. Calabrese,et al.  Switching in the activity state of an interneuron that controls coordination of the hearts in the medicinal leech (Hirudo medicinalis). , 1994, The Journal of experimental biology.

[14]  Ronald L Calabrese,et al.  Model of intersegmental coordination in the leech heartbeat neuronal network. , 2002, Journal of neurophysiology.

[15]  E. Marder,et al.  Invertebrate Central Pattern Generation Moves along , 2005, Current Biology.

[16]  Ronald L Calabrese,et al.  Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network. , 2002, Journal of neurophysiology.

[17]  Ronald L Calabrese,et al.  A Functional Asymmetry in the Leech Heartbeat Timing Network Is Revealed by Driving the Network across Various Cycle Periods , 2002, The Journal of Neuroscience.

[18]  Ronald L Calabrese,et al.  A central pattern generator producing alternative outputs: temporal pattern of premotor activity. , 2006, Journal of neurophysiology.

[19]  Ronald L. Calabrese,et al.  Neural control of the hearts in the leech,Hirudo medicinalis , 2004, Journal of Comparative Physiology A.

[20]  Ronald L. Calabrese,et al.  Neural control of the hearts in the leech,Hirudo medicinalis , 1984, Journal of Comparative Physiology A.

[21]  Brian Mulloney,et al.  Local and intersegmental interactions of coordinating neurons and local circuits in the swimmeret system. , 2007, Journal of neurophysiology.

[22]  Ronald L Calabrese,et al.  Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. , 2002, Journal of neurophysiology.

[23]  Jianhua Cang,et al.  Model for intersegmental coordination of leech swimming: central and sensory mechanisms. , 2002, Journal of neurophysiology.

[24]  Ronald L. Calabrese,et al.  The neural control of alternate heartbeat coordination states in the leech,Hirudo medicinalis , 2004, Journal of comparative physiology.

[25]  E. Marder,et al.  Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. , 2007, Annual review of physiology.

[26]  Eric P. Meyer,et al.  Hemodynamics in the leech: blood flow in two hearts switching between two constriction patterns , 2007, Journal of Experimental Biology.

[27]  Gunther S. Stent,et al.  Neuronal control of heartbeat in the medicinal leech , 2004, Journal of comparative physiology.

[28]  O. Kiehn Locomotor circuits in the mammalian spinal cord. , 2006, Annual review of neuroscience.

[29]  Ronald L Calabrese,et al.  Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator. , 2004, Journal of neurophysiology.

[30]  E. Marder,et al.  Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. , 2006, Journal of neurophysiology.

[31]  Anders Lansner,et al.  Biophysically detailed modelling of microcircuits and beyond , 2005, Trends in Neurosciences.

[32]  I. Zerbst-Boroffka,et al.  Blood Pressure in the Leech Hirudo Medicinalis , 1983 .

[33]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[34]  Brian Mulloney,et al.  Bursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern. , 2006, Journal of neurophysiology.