Marine atmospheric corrosion of carbon steels
暂无分享,去创建一个
Iván Díaz | Daniel de la Fuente | Manuel Morcillo | Joaquín Simancas | Jenifer Alcántara | Belén Chico
[1] Seifollah Nasrazadani,et al. Morphology of rust phases formed on weathering steels in various laboratory corrosion tests , 1989 .
[2] Masato Yamashita,et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge , 2007 .
[3] E. Correa,et al. Atmospheric corrosion of carbon steel in Colombia , 2010 .
[4] Iván Díaz,et al. Atmospheric corrosion data of weathering steels. A review , 2013 .
[5] Iván Díaz,et al. Corrosión atmosférica del acero suave , 2011 .
[6] P. Dillmann,et al. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion , 2004 .
[7] V. Lair,et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron , 2006 .
[8] Kurt Nielsen,et al. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts , 2003 .
[9] F. P. Glasser,et al. Constitution of Green Rust and Its Significance to the Corrosion of Steel in Portland Cement , 1993 .
[10] Dalva Lúcia Araújo de Faria,et al. Characterization of corrosion products formed on steels in the first months of atmospheric exposure , 2003 .
[11] M. Benarie,et al. A general corrosion function in terms of atmospheric pollutant concentrations and rain pH , 1986 .
[12] Takenori Nakayama,et al. Assessment of protective function of steel rust layers by N2 adsorption , 2007 .
[13] K. Kandori,et al. Influences of Metal Chlorides and Sulfates on the Formation of Beta-FeOOH Particles by Aerial Oxidation of FeCl2 Solutions , 2004 .
[14] A. Razvan,et al. Morphology of Rust Phases Formed on Naturally Weathered Weathering Steels in Bridge Spans / Morphologie der unter natürlichem Witterungseinfluß auf „Weathering‘-Stählen gebildeten Rostphasen , 1986 .
[15] P. Refait,et al. On the formation of -FeOOH (akaganite) in chloride-containing environments , 2007 .
[16] Iván Díaz,et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel , 2015 .
[17] Y. Ujihira,et al. Conversion Electron Mössbauer Spectrometric Study of Corrosion Products of Iron Immersed in Sodium Chloride Solution , 1988 .
[18] Heidis Patricia Cano Cuadro. Aceros patinables (Cu, Cr, Ni): resistencia a la corrosión atmosférica y soldabilidad , 2013 .
[19] Martin Stratmann,et al. An electrochemical study of phase-transitions in rust layers , 1983 .
[20] C. Liang,et al. Eight-Year Atmospheric Corrosion Exposure of Steels in China , 1999 .
[21] M. Morcillo,et al. Atmospheric corrosion of mild steel in chloride‐rich environments. Questions to be answered , 2015 .
[22] J. Jiménez,et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization , 2015 .
[23] M. Morcillo,et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity , 2013 .
[24] Akemi Yasukawa,et al. Characterization of Rust on Weathering Steel by Gas Adsorption , 2001 .
[25] Philippe Dillmann,et al. Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system , 2005 .
[26] A. Byström,et al. The crystal structure of hollandite, the related manganese oxide minerals, and α-MnO2 , 1950 .
[27] Joh.‐E. Hiller,et al. Phasenumwandlungen im Rost , 1966 .
[28] T. Ishikawa,et al. Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media , 2014 .
[29] S. Turgoose,et al. POST-EXCAVATION CHANGES IN IRON ANTIQUITIES , 1982 .
[30] A. Mackay. β-Ferric Oxyhydroxide , 1960 .
[31] H. Kihira,et al. Advancements of Weathering Steel Technologies in Japan , 2011 .
[32] M. Morcillo,et al. Weathering steels: From empirical development to scientific design. A review , 2014 .
[33] Desmond C. Cook,et al. Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments , 2005 .
[34] Iván Díaz Ocaña. Corrosión atmosférica de aceros patinables de nueva generación , 2012 .
[35] A. Răzvan,et al. Morphology of Rust Phases Formed on Weathering Steels during Outdoor Atmospheric Exposure in Sheltered Locations under the Bridges / Morphologie der auf „Weathering“-Stählen unter atmosphärischen Bedingungen an geschützten Standorten unter Brücken gebildeten Rostphasen , 1987 .
[36] V. Argyropoulos,et al. The corrosion of excavated archaeological iron with details on weeping and akaganéite , 1999 .
[37] Ying Li,et al. Corrosion of low carbon steel in atmospheric environments of different chloride content , 2009 .
[38] A. Raman. Atmospheric Corrosion Problems with Weathering Steels in Louisiana Bridges , 1987 .
[39] Kazuhiko Noda,et al. Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .
[40] M. Morcillo,et al. Deviation from bilogarithmic law for atmospheric corrosion of steel , 1993 .
[41] S. Hara. A X-Ray Diffraction Analysis on Constituent Distribution of Heavy Rust Layer Formed on Weathering Steel Using Synchrotron Radiation , 2008 .
[42] E. Murad,et al. Iron Oxides and Oxyhydroxides , 1989 .
[43] K. Asami,et al. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years , 2003 .