Marine atmospheric corrosion of carbon steels

The authors gratefully acknowledge the financial support for this study from the Ministry of Science and Innovation of Spain (CICYT-MAT 2008-06649)

[1]  Seifollah Nasrazadani,et al.  Morphology of rust phases formed on weathering steels in various laboratory corrosion tests , 1989 .

[2]  Masato Yamashita,et al.  Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge , 2007 .

[3]  E. Correa,et al.  Atmospheric corrosion of carbon steel in Colombia , 2010 .

[4]  Iván Díaz,et al.  Atmospheric corrosion data of weathering steels. A review , 2013 .

[5]  Iván Díaz,et al.  Corrosión atmosférica del acero suave , 2011 .

[6]  P. Dillmann,et al.  Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion , 2004 .

[7]  V. Lair,et al.  Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron , 2006 .

[8]  Kurt Nielsen,et al.  On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts , 2003 .

[9]  F. P. Glasser,et al.  Constitution of Green Rust and Its Significance to the Corrosion of Steel in Portland Cement , 1993 .

[10]  Dalva Lúcia Araújo de Faria,et al.  Characterization of corrosion products formed on steels in the first months of atmospheric exposure , 2003 .

[11]  M. Benarie,et al.  A general corrosion function in terms of atmospheric pollutant concentrations and rain pH , 1986 .

[12]  Takenori Nakayama,et al.  Assessment of protective function of steel rust layers by N2 adsorption , 2007 .

[13]  K. Kandori,et al.  Influences of Metal Chlorides and Sulfates on the Formation of Beta-FeOOH Particles by Aerial Oxidation of FeCl2 Solutions , 2004 .

[14]  A. Razvan,et al.  Morphology of Rust Phases Formed on Naturally Weathered Weathering Steels in Bridge Spans / Morphologie der unter natürlichem Witterungseinfluß auf „Weathering‘-Stählen gebildeten Rostphasen , 1986 .

[15]  P. Refait,et al.  On the formation of -FeOOH (akaganite) in chloride-containing environments , 2007 .

[16]  Iván Díaz,et al.  Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel , 2015 .

[17]  Y. Ujihira,et al.  Conversion Electron Mössbauer Spectrometric Study of Corrosion Products of Iron Immersed in Sodium Chloride Solution , 1988 .

[18]  Heidis Patricia Cano Cuadro Aceros patinables (Cu, Cr, Ni): resistencia a la corrosión atmosférica y soldabilidad , 2013 .

[19]  Martin Stratmann,et al.  An electrochemical study of phase-transitions in rust layers , 1983 .

[20]  C. Liang,et al.  Eight-Year Atmospheric Corrosion Exposure of Steels in China , 1999 .

[21]  M. Morcillo,et al.  Atmospheric corrosion of mild steel in chloride‐rich environments. Questions to be answered , 2015 .

[22]  J. Jiménez,et al.  Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization , 2015 .

[23]  M. Morcillo,et al.  Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity , 2013 .

[24]  Akemi Yasukawa,et al.  Characterization of Rust on Weathering Steel by Gas Adsorption , 2001 .

[25]  Philippe Dillmann,et al.  Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system , 2005 .

[26]  A. Byström,et al.  The crystal structure of hollandite, the related manganese oxide minerals, and α-MnO2 , 1950 .

[27]  Joh.‐E. Hiller,et al.  Phasenumwandlungen im Rost , 1966 .

[28]  T. Ishikawa,et al.  Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media , 2014 .

[29]  S. Turgoose,et al.  POST-EXCAVATION CHANGES IN IRON ANTIQUITIES , 1982 .

[30]  A. Mackay β-Ferric Oxyhydroxide , 1960 .

[31]  H. Kihira,et al.  Advancements of Weathering Steel Technologies in Japan , 2011 .

[32]  M. Morcillo,et al.  Weathering steels: From empirical development to scientific design. A review , 2014 .

[33]  Desmond C. Cook,et al.  Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments , 2005 .

[34]  Iván Díaz Ocaña Corrosión atmosférica de aceros patinables de nueva generación , 2012 .

[35]  A. Răzvan,et al.  Morphology of Rust Phases Formed on Weathering Steels during Outdoor Atmospheric Exposure in Sheltered Locations under the Bridges / Morphologie der auf „Weathering“-Stählen unter atmosphärischen Bedingungen an geschützten Standorten unter Brücken gebildeten Rostphasen , 1987 .

[36]  V. Argyropoulos,et al.  The corrosion of excavated archaeological iron with details on weeping and akaganéite , 1999 .

[37]  Ying Li,et al.  Corrosion of low carbon steel in atmospheric environments of different chloride content , 2009 .

[38]  A. Raman Atmospheric Corrosion Problems with Weathering Steels in Louisiana Bridges , 1987 .

[39]  Kazuhiko Noda,et al.  Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .

[40]  M. Morcillo,et al.  Deviation from bilogarithmic law for atmospheric corrosion of steel , 1993 .

[41]  S. Hara A X-Ray Diffraction Analysis on Constituent Distribution of Heavy Rust Layer Formed on Weathering Steel Using Synchrotron Radiation , 2008 .

[42]  E. Murad,et al.  Iron Oxides and Oxyhydroxides , 1989 .

[43]  K. Asami,et al.  In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years , 2003 .