Electrophysiological analysis of visual function in mutant mice

The mouse has become a key animal model for ocular research. This situation reflects the fact that genes implicated in human retinal disorders or in mammalian retinal function may be readily manipulated in the mouse. Visual electrophysiology provides a means to examine retinal function in mutant mice, and stimulation and recording protocols have been developed that allow the activity of many classes of retinal neurons to be examined and which take into account unique features of the mouse retina. Here, we review the mouse visual electrophysiology literature, covering techniques used to record the mouse electroretinogram and visual evoked potential, and how these have been applied to characterize the functional implications of gene mutation or manipulation in the mouse retina.

[1]  M. T. Davisson,et al.  Retinal degeneration mutants in the mouse , 2002, Vision Research.

[2]  S. Y. Schmidt,et al.  Retinal degeneration associated with taurine deficiency in the cat. , 1975, Science.

[3]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[4]  M. Seeliger,et al.  Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Palmiter,et al.  Immortalized retinal neurons derived from SV40 T-antigen-induced tumors in transgenic mice , 1990, Neuron.

[6]  M. Naash,et al.  Rod phototransduction in transgenic mice expressing a mutant opsin gene. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  D. Farber,et al.  From mice to men: the cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture. , 1995, Investigative ophthalmology & visual science.

[8]  P. Powers,et al.  Absence of the β subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the α1 subunit and eliminates excitation-contraction coupling , 1996 .

[9]  T. Roderick,et al.  Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. J. Roman,et al.  Enhanced S cone syndrome: Evidence for an abnormally large number of S cones , 1995, Vision Research.

[11]  T. Williams,et al.  Photostasis and Related Phenomena , 1998, Springer US.

[12]  P. Röhlich,et al.  Degeneration of Cone Photoreceptors Induced by Expression of the Mas1 Protooncogene , 2000, Experimental Neurology.

[13]  David W. Yandell,et al.  A point mutation of the rhodopsin gene in one form of retinitis pigmentosa , 1990, Nature.

[14]  M. Naash,et al.  Retinal degeneration in the nervous mutant mouse. IV. Inner retinal changes. , 2001, Experimental eye research.

[15]  H. Fleisch,et al.  Retinol and retinoic acid modulate the metabolism of 25‐hydroxyvitamin D3 in kidney cell culture , 1981, FEBS letters.

[16]  D. Zack,et al.  A mutation in NRL is associated with autosomal dominant retinitis pigmentosa , 1999, Nature Genetics.

[17]  W. A. Hagins,et al.  Signal Transmission along Retinal Rods and the Origin of the Electroretinographic a-Wave , 1969, Nature.

[18]  G. Trick,et al.  Improved electrode for electroretinography. , 1979, Investigative ophthalmology & visual science.

[19]  P. Ray,et al.  Duchenne/Becker muscular dystrophy: correlation of phenotype by electroretinography with sites of dystrophin mutations , 1999, Human Genetics.

[20]  M. McCall,et al.  Identification of the gene and the mutation responsible for the mouse nob phenotype. , 2003, Investigative ophthalmology & visual science.

[21]  L. Maffei,et al.  The visual physiology of the wild type mouse determined with pattern VEPs , 1999, Vision Research.

[22]  H. Lester,et al.  Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice: Phenotypic Impact in Retina , 2000, The Journal of Neuroscience.

[23]  E. Newman,et al.  Model of electroretinogram b-wave generation: a test of the K+ hypothesis. , 1984, Journal of neurophysiology.

[24]  S. Sanyal,et al.  Development and degeneration of retina inrds mutant mice: Effects of light on the rate of degeneration in albino and pigmented homozygous and heterozygous mutant and normal mice , 1986, Vision Research.

[25]  Minoru Haginoya,et al.  Electron Microscopic Analysis , 1991 .

[26]  C. Mahaffey,et al.  The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit , 1998, Nature Genetics.

[27]  Y. Goto,et al.  Morphological and physiological consequences of the selective elimination of rod photoreceptors in transgenic mice. , 1996, Experimental eye research.

[28]  A. Milam,et al.  Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin. , 1996, Investigative ophthalmology & visual science.

[29]  C. Scharfe,et al.  The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein , 2000, Nature Genetics.

[30]  A. Ciccodicola,et al.  A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X–linked retinitis pigmentosa (RP3) , 1996, Nature Genetics.

[31]  G H Jacobs,et al.  Transgenic mice expressing a functional human photopigment. , 1998, Investigative ophthalmology & visual science.

[32]  M. Seeliger,et al.  Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Kym M. Boycott,et al.  Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness , 1998, Nature Genetics.

[34]  K. Palczewski,et al.  Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina , 1996, Trends in Neurosciences.

[35]  P. Detwiler,et al.  Recovery of Visual Functions in a Mouse Model of Leber Congenital Amaurosis* , 2002, The Journal of Biological Chemistry.

[36]  J. Hetling,et al.  Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired‐flash electroretinograms , 1999, The Journal of physiology.

[37]  J. C. Saari,et al.  Biochemistry of Visual Pigment Regeneration , 2000 .

[38]  S. Kachi,et al.  Retinal dysfunction in basigin deficiency. , 2000, Investigative ophthalmology & visual science.

[39]  B. Rosner,et al.  Effect of vitamin A supplementation on rhodopsin mutants threonine-17 --> methionine and proline-347 --> serine in transgenic mice and in cell cultures. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Dryja,et al.  Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa , 1992, Neuron.

[41]  K. Alagramam,et al.  Assessment of retinal structure and function in Ames waltzer mice. , 2003, Investigative ophthalmology & visual science.

[42]  B. Lorenz,et al.  Positional cloning of the gene associated with X-linked juvenile retinoschisis , 1997, Nature Genetics.

[43]  N. Copeland,et al.  Identification of genes within the Krd deletion on mouse Chromosome 19 , 1999, Mammalian Genome.

[44]  M. Naash,et al.  Properties of the mouse cone-mediated electroretinogram during light adaptation , 1993, Neuroscience Letters.

[45]  Peter Sterling,et al.  The Light Response of ON Bipolar Neurons Requires Gαo , 2000, The Journal of Neuroscience.

[46]  C. Hartmann,et al.  Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. , 2000, Investigative ophthalmology & visual science.

[47]  T. Dryja,et al.  Evaluation of the gene encoding the gamma subunit of rod phosphodiesterase in retinitis pigmentosa. , 1994, Investigative ophthalmology & visual science.

[48]  Jeannie Chen,et al.  A photic visual cycle of rhodopsin regeneration is dependent on Rgr , 2001, Nature Genetics.

[49]  T. Hirose,et al.  Electrophysiological and Psychophysical Studies in Congenital Retinoschisis of X-Linked Recessive Inheritance , 1977 .

[50]  H. Ripps The rhodopsin cycle: a twist in the tale. , 2001, Progress in brain research.

[51]  M. Valverde ClC channels: leaving the dark ages on the verge of a new millennium. , 1999, Current opinion in cell biology.

[52]  R. Molday Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. , 1998, Investigative ophthalmology & visual science.

[53]  D. G. Green,et al.  Electrophysiology and density of retinal neurons in mice with a mutation that includes the Pax2 locus. , 1997, Investigative ophthalmology & visual science.

[54]  D. G. Green,et al.  mdx Cv3 Mouse Is a Model for Electroretinography of Duchenne/Becker Muscular Dystrophy , 1995 .

[55]  S. Schwartz,et al.  Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. , 2001, Human molecular genetics.

[56]  S. Brodie,et al.  Electrophysiologic testing in disorders of the retina, optic nerve, and visual pathway , 1991 .

[57]  Janet Rossant,et al.  Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis , 2000, Nature Genetics.

[58]  P. Gouras,et al.  Cone properties of the light-adapted murine ERG , 1998, Documenta Ophthalmologica.

[59]  R. J. Mullen,et al.  Retinal degeneration in the nervous mutant mouse. II. Electron microscopic analysis , 1993, The Journal of comparative neurology.

[60]  J. Phelan,et al.  A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. , 2000, Molecular vision.

[61]  G. Niemeyer The function of the retina in the perfused eye , 1975, Documenta Ophthalmologica.

[62]  R L Sidman,et al.  Morphological, physiological, and biochemical changes in rhodopsin knockout mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Steve D. M. Brown,et al.  Mutations in the myosin VIIA gene cause non-syndromic recessive deafness , 1997, Nature Genetics.

[64]  W Seiple,et al.  Electrophysiological and psychophysical flicker sensitivity in patients with primary open-angle glaucoma and ocular hypertension. , 1990, Investigative ophthalmology & visual science.

[65]  A. Messer,et al.  An early-onset congenic strain of the motor neuron degeneration (mnd) mouse. , 1999, Molecular genetics and metabolism.

[66]  R. Reinhardt,et al.  Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. , 1996, Human molecular genetics.

[67]  E. Mugnaini,et al.  Effects of the murine mutation ‘nervous’ on neurons in cerebellum and dorsal cochlear nucleus , 1988, Journal of neurocytology.

[68]  D. G. Green,et al.  Constitutive “Light” Adaptation in Rods from G90D Rhodopsin: A Mechanism for Human Congenital Nightblindness without Rod Cell Loss , 2001, The Journal of Neuroscience.

[69]  K. Yau,et al.  Disruption of a Retinal Guanylyl Cyclase Gene Leads to Cone-Specific Dystrophy and Paradoxical Rod Behavior , 1999, The Journal of Neuroscience.

[70]  M. North,et al.  A candidate gene for the mouse mutation tubby , 1996, Nature.

[71]  L. Maffei,et al.  The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Nawy The Metabotropic Receptor mGluR6 May Signal Through Go, But Not Phosphodiesterase, in Retinal Bipolar Cells , 1999, The Journal of Neuroscience.

[73]  P. Röhlich,et al.  A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice , 1997, Visual Neuroscience.

[74]  F. Riemslag,et al.  Flicker electroretinograms: a systems analytic approach. , 1992, Optometry and vision science : official publication of the American Academy of Optometry.

[75]  N. Peachey,et al.  Noninvasive recording and response characteristics of the rat dc-electroretinogram , 2002, Visual Neuroscience.

[76]  G H Jacobs,et al.  Human Cone Pigment Expressed in Transgenic Mice Yields Altered Vision , 1999, The Journal of Neuroscience.

[77]  M. Simon,et al.  RGS9-1 is required for normal inactivation of mouse cone phototransduction. , 2001, Molecular vision.

[78]  T. Aleman,et al.  Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Hood,et al.  Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[80]  R. Carr,et al.  Evaluating macular function using the focal ERG. , 1986, Investigative ophthalmology & visual science.

[81]  W. Seiple,et al.  Electro-oculogram changes in patients with ocular hypertension and primary open-angle glaucoma , 2005, Documenta Ophthalmologica.

[82]  P. Sieving,et al.  The electroretinogram of the rhodopsin knockout mouse , 1999, Visual Neuroscience.

[83]  H. Ripps,et al.  The rhodopsin cycle is preserved in IRBP “knockout” mice despite abnormalities in retinal structure and function , 2000, Visual Neuroscience.

[84]  A. Fulton,et al.  Dark-adapted sensitivity, rhodopsin content, and background adaptation in pcd/pcd mice. , 1982, Investigative ophthalmology & visual science.

[85]  A. Cideciyan,et al.  Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[86]  B. Rohrer Gene dosage effect of the TrkB receptor on rod physiology and biochemistry in juvenile mouse retina. , 2001, Molecular vision.

[87]  J. Lupski,et al.  A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy , 1997, Nature Genetics.

[88]  T. Meitinger,et al.  An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness , 1998, Nature Genetics.

[89]  T. Roderick,et al.  Retinal degeneration in motor neuron degeneration: a mouse model of ceroid lipofuscinosis. , 1994, Investigative ophthalmology & visual science.

[90]  Steve D. M. Brown,et al.  Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene , 1997, Nature Genetics.

[91]  K. Ohlemiller,et al.  Progression of cochlear and retinal degeneration in the tubby (rd5) mouse. , 1997, Audiology & neuro-otology.

[92]  C. Keeler The Inheritance of a Retinal Abnormality in White Mice. , 1924, Proceedings of the National Academy of Sciences of the United States of America.

[93]  G. Travis,et al.  The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR) , 1997, FEBS letters.

[94]  D. Farber,et al.  Genetic and physical maps of the mouse rd3 locus; exclusion of the ortholog of USH2A , 1999, Mammalian Genome.

[95]  R. Weiler,et al.  Visual Transmission Deficits in Mice with Targeted Disruption of the Gap Junction Gene Connexin36 , 2001, The Journal of Neuroscience.

[96]  R G Weleber,et al.  HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. , 2000, Investigative ophthalmology & visual science.

[97]  T. Roderick,et al.  Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. , 2000, Investigative ophthalmology & visual science.

[98]  J. Sahel,et al.  Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse , 1999, Nature Medicine.

[99]  T. Roderick,et al.  A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A. Cideciyan,et al.  A nonsense mutation in a novel gene is associated with retinitis pigmentosa in a family linked to the RP1 locus. , 1999, Human molecular genetics.

[101]  P. Gouras,et al.  Impaired retinal function and vitamin A availability in mice lacking retinol‐binding protein , 1999, The EMBO journal.

[102]  R. J. Mullen,et al.  Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix , 1993, The Journal of comparative neurology.

[103]  W. Ridder,et al.  Rod multifocal electroretinograms in mice. , 1999, Investigative ophthalmology & visual science.

[104]  S. Jacobson,et al.  Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness , 2000, Nature Genetics.

[105]  D. Hamasaki,et al.  Electroretinographic study of the C57BL/6-mivit/mivit mouse model of retinal degeneration. , 1994, Investigative ophthalmology & visual science.

[106]  Winston A Hide,et al.  Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa , 1999, Nature Genetics.

[107]  M. Naash,et al.  The Effect of Peripherin/rds Haploinsufficiency on Rod and Cone Photoreceptors , 1997, The Journal of Neuroscience.

[108]  B. W. Nicholson,et al.  A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. , 1993, Archives of ophthalmology.

[109]  R. Sidman,et al.  Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit , 2000 .

[110]  S. Nishiguchi,et al.  Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[111]  H. Jansen,et al.  Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. , 1985, Experimental eye research.

[112]  P. Sieving,et al.  A proximal retinal component in the primate photopic ERG a-wave. , 1994, Investigative ophthalmology & visual science.

[113]  C. Westall,et al.  Dystrophin expression in the human retina is required for normal function as defined by electroretinography , 1993, Nature Genetics.

[114]  I. Nir,et al.  Ultrastructural features of retinal dystrophy in mutant vitiligo mice. , 1995, Experimental eye research.

[115]  R. S. St Jules,et al.  L‐type calcium channels in the photoreceptor ribbon synapse: Localization and role in plasticity , 1999, The Journal of comparative neurology.

[116]  P. Avner,et al.  Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap‐junctional protein expressed preferentially in retina and brain , 2000 .

[117]  M. Lavail,et al.  A naturally occurring mouse model of X-linked congenital stationary night blindness. , 1998, Investigative ophthalmology & visual science.

[118]  R. Sidman,et al.  PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[119]  D. Baylor,et al.  Spectral sensitivity of human cone photoreceptors , 1987, Nature.

[120]  C. Petit,et al.  The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene , 1997, Nature Genetics.

[121]  M. Tamai,et al.  A homozygous 1–base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese , 1995, Nature Genetics.

[122]  C. Lagenaur,et al.  Expression of a synapse‐associated membrane protein, P84/SHPS‐1, and its ligand, IAP/CD47, in mouse retina , 2000, The Journal of comparative neurology.

[123]  J. Sutcliffe,et al.  Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds) , 1989, Nature.

[124]  S. Riazuddin,et al.  Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. , 2001, American journal of human genetics.

[125]  N. Peachey,et al.  Age-Related Changes in the Mouse Outer Retina , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[126]  E. Adachi-Usami,et al.  Effect of body temperature on electroretinogram of mice. , 2002, Investigative ophthalmology & visual science.

[127]  E. Pugh,et al.  UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.

[128]  J B Hurley,et al.  Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[129]  S. Brodie,et al.  Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. , 2001, Investigative ophthalmology & visual science.

[130]  E. Pugh,et al.  The Origin of the Major Rod- and Cone-Driven Components of the Rodent Electroretinogram and the Effect of Age and Light-Rearing History on the Magnitude of These Components , 1998 .

[131]  M. Naash,et al.  Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[132]  T. Dryja,et al.  Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with Retinitis pigmentosa , 1998, Nature Genetics.

[133]  J. Nathans,et al.  Stargardt's ABCR is localized to the disc membrane of retinal rod outer segments , 1997, Nature Genetics.

[134]  P. Gouras,et al.  A Point Mutation (W70A) in the Rod PDEγ Gene Desensitizing and Delaying Murine Rod Photoreceptors , 1999 .

[135]  T. L. McGee,et al.  Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa , 1999, Nature Genetics.

[136]  Steve D. M. Brown,et al.  Defective myosin VIIA gene responsible for Usher syndrome type IB , 1995, Nature.

[137]  J. Naggert,et al.  Molecular characterization of TUB, TULP1, and TULP2, members of the novel tubby gene family and their possible relation to ocular diseases. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[138]  D. G. Green,et al.  Kidney and retinal defects (Krd), a transgene-induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. , 1994, Genomics.

[139]  S. Brownstein,et al.  Congenital hereditary (juvenile X-linked) retinoschisis. Histopathologic and ultrastructural findings in three eyes. , 1986, Archives of ophthalmology.

[140]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[141]  R. Tolwani,et al.  Animal models for motor neuron disease. , 1999, Laboratory animal science.

[142]  Tiansen Li,et al.  Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase , 1990, Nature.

[143]  M. Simon,et al.  Mice Lacking G-Protein Receptor Kinase 1 Have Profoundly Slowed Recovery of Cone-Driven Retinal Responses , 2000, The Journal of Neuroscience.

[144]  M. Naash,et al.  Transgenic Bcl-2 expressed in photoreceptor cells confers both death-sparing and death-inducing effects. , 2001, Experimental eye research.

[145]  R. Leube,et al.  Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice , 2001, Neuroscience.

[146]  Tomomitsu Miyoshi,et al.  Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene , 1995, Cell.

[147]  D. Bok,et al.  Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle , 1998, Nature Genetics.

[148]  Jiangang Gao,et al.  Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[149]  H. Jansen,et al.  Absence of receptor outer segments in the retina of rds mutant mice , 1981, Neuroscience Letters.

[150]  K. Yagasaki,et al.  Congenital stationary night blindness with negative electroretinogram. A new classification. , 1986 .

[151]  A. Warbritton,et al.  Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. , 1995, Laboratory animal science.

[152]  T. Dryja,et al.  Missense mutation in the gene encoding the α subunit of rod transducin in the Nougaret form of congenital stationary night blindness , 1996, Nature Genetics.

[153]  L. Wachtmeister,et al.  Oscillatory potentials in the retina: what do they reveal , 1998, Progress in Retinal and Eye Research.

[154]  T. Roderick,et al.  New mouse primary retinal degeneration (rd-3). , 1993, Genomics.

[155]  M. Silverman,et al.  Cochlear and retinal degeneration in the tubby mouse , 1995, Neuroreport.

[156]  D. Birch,et al.  Standardized full-field electroretinography. Normal values and their variation with age. , 1992, Archives of ophthalmology.

[157]  T. Muramatsu,et al.  Inactivation of the Basigin gene impairs normal retinal development and maturation , 2002, Vision Research.

[158]  M. Lavail,et al.  Retinal degeneration in motor neuron degeneration (mnd) mutant mice. , 1993, Experimental eye research.

[159]  T H Roderick,et al.  A new dominant retinal degeneration (Rd4) associated with a chromosomal inversion in the mouse. , 1997, Genomics.

[160]  J. Grimsby,et al.  Novel mutations in the NRL gene and associated clinical findings in patients with dominant retinitis pigmentosa. , 2002, Archives of ophthalmology.

[161]  P. Gouras,et al.  Retinal Degeneration in Mice Lacking the γ Subunit of the Rod cGMP Phosphodiesterase , 1996, Science.

[162]  M. Sporn,et al.  The Retinoids : biology, chemistry, and medicine , 1994 .

[163]  M. McCall,et al.  nob: A Mouse Model of CSNB1 , 2001 .

[164]  R. J. Mullen,et al.  Two types of retinal degeneration in cerebellar mutant mice. , 1975, Nature.

[165]  C. Grimm,et al.  New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis , 2001, Nature Genetics.

[166]  L. Stryer,et al.  Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its γ subunit and transducin , 1986 .

[167]  P. Lukasiewicz,et al.  Elimination of the ρ1 Subunit Abolishes GABACReceptor Expression and Alters Visual Processing in the Mouse Retina , 2002, The Journal of Neuroscience.

[168]  C. G. Wright,et al.  The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene , 2001, Nature Genetics.

[169]  R. J. Mullen,et al.  Two new types of retinal degeneration in cerebellar mutant mice , 1975, Nature.

[170]  J. Robson,et al.  The Scotopic Threshold Response of the Dark‐Adapted Electroretinogram of the Mouse , 2002, The Journal of physiology.

[171]  J. M. Fadool,et al.  5A11 antigen is a cell recognition molecule which is involved in neuronal‐glial interactions in avian neural retina , 1993, Developmental dynamics : an official publication of the American Association of Anatomists.

[172]  T. Roderick,et al.  Screening for mouse retinal degenerations. I. Correlation of indirect ophthalmoscopy, electroretinograms, and histology. , 1989, Documenta ophthalmologica. Advances in ophthalmology.

[173]  Y. Goto An electrode to record the mouse cornea electroretinogram , 1995, Documenta Ophthalmologica.

[174]  A. Draguhn,et al.  Disruption of ClC-3, a Chloride Channel Expressed on Synaptic Vesicles, Leads to a Loss of the Hippocampus , 2001, Neuron.

[175]  J. Hurley,et al.  Multiple Phosphorylation of Rhodopsin and the In Vivo Chemistry Underlying Rod Photoreceptor Dark Adaptation , 2001, Neuron.

[176]  M. Kondo,et al.  Scotopic threshold response in complete and incomplete types of congenital stationary night blindness. , 1994, Investigative ophthalmology & visual science.

[177]  M. Sandberg,et al.  A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[178]  M. Alpern,et al.  Dark-light: model for nightblindness from the human rhodopsin Gly-90-->Asp mutation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[179]  F. Tremblay,et al.  Duchenne muscular dystrophy: negative scotopic bright-flash electroretinogram and normal dark adaptation. , 1994, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[180]  S. Jacobson,et al.  Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. , 1990, American journal of ophthalmology.

[181]  P. Sieving,et al.  Comparative structural and functional analysis of photoreceptor neurons of Rho-/- mice reveal increased survival on C57BL/6J in comparison to 129Sv genetic background , 2001, Visual Neuroscience.

[182]  K. Alexander,et al.  Temporal properties of the mouse cone electroretinogram. , 2002, Journal of neurophysiology.

[183]  M. Brigell,et al.  Psychophysical and electroretinographic findings in X-linked juvenile retinoschisis. , 1987, Archives of ophthalmology.

[184]  R. Molday,et al.  Cloning of the CDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies , 1992, Neuron.

[185]  M. Lavail,et al.  New Insights Into Retinal Degenerative Diseases , 2001, Springer US.

[186]  David J. Baylor,et al.  Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant , 1995, Science.

[187]  R. J. Mullen,et al.  Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis , 1982, The Journal of comparative neurology.

[188]  Tiansen Li,et al.  A role for the Tubby-like protein 1 in rhodopsin transport. , 2001, Investigative ophthalmology & visual science.

[189]  J. Naggert,et al.  Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. , 2001, Human molecular genetics.

[190]  S. B. Smith,et al.  Effects of dark-rearing on the retinal degeneration of the C57BL/6-mivit/mivit mouse. , 1994, Experimental eye research.

[191]  M. Lavail,et al.  Increased susceptibility to constant light in nr and pcd mice with inherited retinal degenerations. , 1999, Investigative ophthalmology & visual science.

[192]  M. Lavail,et al.  Degenerative Retinal Diseases , 2012, Springer US.

[193]  R. Massof,et al.  Supplemental vitamin A retards loss of ERG amplitude in retinitis pigmentosa. , 1993, Archives of ophthalmology.

[194]  R. Linsenmeier,et al.  Three light-evoked responses of the retinal pigment epithelium , 1983, Vision Research.

[195]  E N Pugh,et al.  Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. , 1994, Investigative ophthalmology & visual science.

[196]  M. Lavail,et al.  Retinal degeneration in the nervous mutant mouse. III. Electrophysiological studies of the visual pathway. , 2000, Experimental eye research.

[197]  A. Vingrys,et al.  Retinal anatomy and function of the transthyretin null mouse. , 2001, Experimental eye research.

[198]  T. Aleman,et al.  Melatonin delays photoreceptor degeneration in the rds/rds mouse , 2001, Neuroreport.

[199]  M. Lavail,et al.  Role of Neurotrophin Receptor TrkB in the Maturation of Rod Photoreceptors and Establishment of Synaptic Transmission to the Inner Retina , 1999, The Journal of Neuroscience.

[200]  S. Sanyal,et al.  Development and degeneration of retina in rds mutant mice: The electroretinogram , 1984, Neuroscience Letters.

[201]  D. Baylor,et al.  Activation, deactivation, and adaptation in vertebrate photoreceptor cells. , 2001, Annual review of neuroscience.

[202]  P. E. Hallett,et al.  A schematic eye for the mouse, and comparisons with the rat , 1985, Vision Research.

[203]  R. J. Mullen,et al.  Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographio analysis , 1982, The Journal of comparative neurology.

[204]  G. Travis,et al.  Probable exclusion of the cortexin-encoding gene as a candidate for mouse neurological mutants: nervous, tottering and motor neuron degeneration. , 1996, Gene.

[205]  J. Robson,et al.  Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram , 1995, Visual Neuroscience.

[206]  M. Naash,et al.  Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene. , 1995, Investigative ophthalmology & visual science.

[207]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[208]  H. Qian,et al.  Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma2-subunits , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[209]  C. Lagenaur,et al.  Electroretinograms remain normal in mice lacking a synapse associated protein , 2001, Neuroscience Letters.

[210]  S. Cantwell Ferret, rabbit, and rodent anesthesia. , 2001, The veterinary clinics of North America. Exotic animal practice.

[211]  N. Heintz,et al.  A high-resolution genetic map of the nervous locus on mouse chromosome 8. , 1998, Genomics.

[212]  Mineo Kondo,et al.  Nrl is required for rod photoreceptor development , 2001, Nature Genetics.

[213]  G. Chader,et al.  Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. , 1993, Molecular neurobiology.

[214]  R. Sidman,et al.  Purkinje cell degeneration (pcd) Phenotypes Caused by Mutations in the Axotomy-Induced Gene, Nna1 , 2002, Science.

[215]  D. Birch,et al.  Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. , 2001, Investigative ophthalmology & visual science.

[216]  M. Al-Ubaidi,et al.  Photoreceptor degeneration induced by the expression of simian virus 40 large tumor antigen in the retina of transgenic mice. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[217]  D. Birch,et al.  Insights into the Function of Rim Protein in Photoreceptors and Etiology of Stargardt's Disease from the Phenotype in abcr Knockout Mice , 1999, Cell.

[218]  M. Low,et al.  Dysfunctional Light-Evoked Regulation of cAMP in Photoreceptors and Abnormal Retinal Adaptation in Mice Lacking Dopamine D4 Receptors , 2002, The Journal of Neuroscience.

[219]  S. Giambrone,et al.  Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway. , 1994, The Journal of clinical investigation.

[220]  M. Seeliger,et al.  Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[221]  J. Hurley,et al.  Visual Cycle Impairment in Cellular Retinaldehyde Binding Protein (CRALBP) Knockout Mice Results in Delayed Dark Adaptation , 2001, Neuron.

[222]  M. McCall,et al.  Functional consequences of oncogene-induced horizontal cell degeneration in the retinas of transgenic mice , 1997, Visual Neuroscience.

[223]  Tiansen Li,et al.  Retinal degeneration in tulp1-/- mice: vesicular accumulation in the interphotoreceptor matrix. , 1999, Investigative ophthalmology & visual science.

[224]  K. Steel,et al.  A type VII myosin encoded by the mouse deafness gene shaker-1 , 1995, Nature.

[225]  T. Dryja,et al.  Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness , 1997, Nature Genetics.

[226]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[227]  D. G. Green,et al.  Effects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of duchenne muscular dystrophy mouse mutants. , 1999, Molecular genetics and metabolism.

[228]  M. Potter,et al.  Sildenafil-mediated reduction in retinal function in heterozygous mice lacking the gamma-subunit of phosphodiesterase. , 2001, Investigative ophthalmology & visual science.

[229]  J. C. Saari Biochemistry of visual pigment regeneration: the Friedenwald lecture. , 2000, Investigative ophthalmology & visual science.

[230]  D. Hood,et al.  Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. , 1994, Investigative ophthalmology & visual science.

[231]  M. Sands,et al.  Retinal function is improved in a murine model of a lysosomal storage disease following bone marrow transplantation. , 2000, Experimental eye research.

[232]  R. Weleber The effect of age on human cone and rod ganzfeld electroretinograms. , 1981, Investigative ophthalmology & visual science.

[233]  E. Pugh,et al.  Functionally rodless mice: transgenic models for the investigation of cone function in retinal disease and therapy , 2002, Vision Research.

[234]  W. Sly,et al.  Photoreceptor degeneration and altered distribution of interphotoreceptor matrix proteoglycans in the mucopolysaccharidosis VII mouse. , 1993, Experimental eye research.

[235]  B. J. Klevering,et al.  Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. , 2000, American journal of human genetics.

[236]  D. Oprian,et al.  Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness , 1994, Nature.

[237]  K. Steel,et al.  Electroretinographic anomalies in mice with mutations in Myo7a, the gene involved in human Usher syndrome type 1B. , 2001, Investigative ophthalmology & visual science.

[238]  Denis A. Baylor,et al.  Prolonged photoresponses in transgenic mouse rods lacking arrestin , 1997, Nature.

[239]  M. Sandberg,et al.  Rod and cone function in the Nougaret form of stationary night blindness. , 1998, A M A Archives of Ophthalmology.

[240]  Frank Müller,et al.  Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels , 1993, Neuron.

[241]  M. Naash,et al.  The relationship between opsin overexpression and photoreceptor degeneration. , 2001, Investigative ophthalmology & visual science.

[242]  S. Korsmeyer,et al.  Bcl-2 gene family in the nervous system. , 1997, Annual review of neuroscience.

[243]  J. Naggert,et al.  Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. , 2000, Human molecular genetics.

[244]  P. Powers,et al.  Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. , 2002, Investigative ophthalmology & visual science.

[245]  S. Brodie,et al.  Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents , 2001, Vision Research.

[246]  P. Gouras,et al.  In vivo studies of the gamma subunit of retinal cGMP-phophodiesterase with a substitution of tyrosine-84. , 2001, The Biochemical journal.

[247]  C. G. Wright,et al.  Neuroepithelial defects of the inner ear in a new allele of the mouse mutation Ames waltzer , 2000, Hearing Research.

[248]  T. Muramatsu,et al.  Retinal degeneration following failed photoreceptor maturation in 5A11/basigin null mice. , 2001, Experimental eye research.

[249]  P. Sieving,et al.  Retinopathy induced in mice by targeted disruption of the rhodopsin gene , 1997, Nature Genetics.

[250]  E. Adachi‐Usami,et al.  Haloperidol delays visually evoked cortical potentials but not electroretinograms in mice. , 1990, Journal of ocular pharmacology.

[251]  D. Harris,et al.  The effects of dystrophin gene mutations on the ERG in mice and humans. , 1993, Investigative ophthalmology & visual science.

[252]  J. Robson,et al.  Dissecting the dark-adapted electroretinogram , 1998, Documenta Ophthalmologica.

[253]  A. Chapelle,et al.  The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8 , 1999, Nature Genetics.

[254]  D. G. Green,et al.  mdxCv3 mouse is a model for electroretinography of Duchenne/Becker muscular dystrophy. , 1995, Investigative ophthalmology & visual science.

[255]  P. Sieving,et al.  Evidence for two sites of adaptation affecting the dark-adapted ERG of cats and primates , 1995, Vision Research.

[256]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[257]  M. McCall,et al.  Localization of the mouse nob (no b-wave) gene to the centromeric region of the X chromosome. , 1999, Investigative ophthalmology & visual science.

[258]  A. Elsner,et al.  Analysis of nonlinearities in the flicker ERG. , 1992, Optometry and vision science : official publication of the American Academy of Optometry.

[259]  Jean Bennett,et al.  Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate , 2000, Nature Genetics.

[260]  M. Naash,et al.  Expression of a mutant opsin gene increases the susceptibility of the retina to light damage , 1997, Visual Neuroscience.

[261]  P. Sterling,et al.  Light Response of Retinal ON Bipolar Cells Requires a Specific Splice Variant of Gαo , 2002, The Journal of Neuroscience.

[262]  R. Mcinnes,et al.  Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[263]  J. C. Low The corneal ERG of the heterozygous retinal degeneration mouse , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[264]  W. Blaner,et al.  Early Onset Photoreceptor Abnormalities Induced by Targeted Disruption of the Interphotoreceptor Retinoid-Binding Protein Gene , 1998, The Journal of Neuroscience.

[265]  J. Nathans,et al.  A Photoreceptor-Specific Cadherin Is Essential for the Structural Integrity of the Outer Segment and for Photoreceptor Survival , 2001, Neuron.

[266]  M. Naash,et al.  Polygenic Disease and Retinitis Pigmentosa: Albinism Exacerbates Photoreceptor Degeneration Induced by the Expression of a Mutant Opsin in Transgenic Mice , 1996, The Journal of Neuroscience.

[267]  G. M. Strain,et al.  Flash and pattern reversal visual evoked potentials in C57BL/6J and B6CBAF1/J mice , 1993, Brain Research Bulletin.

[268]  R. Weiler,et al.  Expression of Neuronal Connexin36 in AII Amacrine Cells of the Mammalian Retina , 2001, The Journal of Neuroscience.

[269]  Mark A. Suckow,et al.  The laboratory mouse , 2000 .

[270]  Y. Goto,et al.  Functional consequences of oncogene-induced photoreceptor degeneration in transgenic mice , 1995, Visual Neuroscience.

[271]  S. Cringle,et al.  Effect of scleral recording location on ERG amplitude. , 1986, Current eye research.

[272]  D. Baylor,et al.  Phospholipase C β4 is involved in modulating the visual response in mice , 1996 .