Asymmetric synthesis of allylsilanes by palladium-catalyzed asymmetric reduction of allylic carbonates with formic acid☆

[1]  K. Yanagi,et al.  Catalytic Asymmetric Reduction of Allylic Esters with Formic Acid Catalyzed by Palladium-MOP Complexes , 1994 .

[2]  A. Ohno,et al.  Preparation of silafunctional allylsilanes by palladium-catalyzed silylation of allylic chlorides with 1,1-dichloro-1-phenyl-2,2,2-trimethyldisilane , 1993 .

[3]  Yoshinori Yamamoto,et al.  SELECTIVE REACTIONS USING ALLYLIC METALS , 1993 .

[4]  J. Panek,et al.  Asymmetric [3 + 2] .DELTA.2-isoxazoline annulation by electrophilic substitution of (E)-crotylsilanes with nitrosium tetrafluoroborate , 1993 .

[5]  Y. Uozumi,et al.  Synthesis of optically active 2-(diarylphosphino)-1,1'-binaphthyls, efficient chiral monodentate phosphine ligands , 1993 .

[6]  Y. Uozumi,et al.  Catalytic asymmetric synthesis of optically active 2-alkanols via hydrosilylation of 1-alkenes with a chiral monophosphine-palladium catalyst , 1991 .

[7]  Tamio Hayashi,et al.  Catalytic asymmetric hydrosilylation of 1,3-dienes with new chiral ferrocenylphosphine-palladium complexes , 1990 .

[8]  H. Brunner Enantioselective Synthesis of Organic Compounds with Optically Active Transition Metal Catalysts in Substoichiometric Quantities , 1989 .

[9]  R. Waymouth,et al.  Enantioselective homogeneous catalysis involving transition-metal-allyl intermediates , 1989 .

[10]  I. Ojima,et al.  Recent advances in catalytic asymmetric reactions promoted by transition metal complexes , 1989 .

[11]  M. Kumada,et al.  Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. 3. Preparation of optically active allylsilanes by palladium-catalyzed asymmetric Grignard cross-coupling , 1986 .

[12]  T. Hosokawa,et al.  Synthesis and reaction of [.eta.3-1-methyl-1-(trimethylsilyl)allyl](.mu.-dichloro)dipalladium(II). Molecular structure of anti-[.eta.3-1-methyl-1-(trimethylsilyl)allyl]chloro(triphenylphosphine)palladium(II) , 1985 .

[13]  Tamio Hayashi,et al.  Preparation of optically active allylsilanes by catalytic asymmetric hydrosilylation of 1-arylbutadienes1 , 1985 .

[14]  M. Kumada,et al.  Optically active allylsilanes. 8. Stereochemistry in the reaction of optically active allylsilanes with m-chloroperoxybenzoic acid , 1984 .

[15]  M. Kumada,et al.  Optically active allylsilanes. 4. Enantioselective allylation of aldehydes with an optically active allylsilane , 1983 .

[16]  K. Tamao,et al.  Optically active cyclic allylsilanes: Preparation by asymmetric hydrosilylation and anti stereochemistry in SE' reactions☆ , 1983 .

[17]  M. Kumada,et al.  Optically active allylsilanes. 2. High stereoselectivity in asymmetric reaction with aldehydes producing homoallylic alcohols , 1982 .

[18]  M. Kumada,et al.  OPTICALLY ACTIVE ALLYLSILANES. 1. PREPARATION BY PALLADIUM-CATALYZED ASYMMETRIC GRIGNARD CROSS-COUPLING AND ANTI STEREOCHEMISTRY IN ELECTROPHILIC SUBSTITUTION REACTIONS , 1982 .

[19]  M. Kumada,et al.  Anti stereochemistry in protodesilylation of an optically active allylsilane with trifluoroacetic acid-D , 1982 .

[20]  I. Fleming Tilden Lecture. Some uses of silicon compounds in organic synthesis , 1981 .