Solution Space Development: Conceptual Reflections and Development of the Parameter Space Matrix as Planning Tool for Geometry-based Solution Spaces

Today’s CAD-systems offer the possibility to model geometry-based solution spaces based on parametrics and feature technology. Here, the solution space is the set of all feasible product alternatives from which a distinct variant for a defined set of requirements may be configured. A necessary step prior to modelling the solution space is to acquire knowledge about dependencies of requirements, solutions and restrictions that are dictated by the supply chain, e.g. manufacturing restrictions. In this article, the authors contribute to this field by developing the Parameter Space Matrix (ParSM) as a tool for a structured elicitation of requirements, solution space restrictions and the resulting model parameters for the CAD-model. Furthermore, the application of ParSM is shown and discussed on a toaster with variable body elements where the manufacturing restrictions result of an additive manufacturing process.

[1]  Josef Ponn Systematisierung des Lösungsraums , 2016 .

[2]  Maria J. Stokes,et al.  Managing Engineering Knowledge: MOKA-Methodology for Knowledge Based Engineering Applications , 2001 .

[3]  Jami J. Shah,et al.  Designing with Parametric CAD: Classification and comparison of construction techniques , 1998 .

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  M. Heinrich,et al.  A resource-based paradigm for the configuring of technical systems from modular components , 1991, [1991] Proceedings. The Seventh IEEE Conference on Artificial Intelligence Application.

[6]  Josef Ponn,et al.  Systematisch von Anforderungen zu Konzepten und Gestaltlösungen , 2011 .

[7]  R. Lachmayer,et al.  DEGREES OF CUSTOMIZATION AND SALES SUPPORT SYSTEMS - ENABLERS TO SUSTAINIBILITY IN MASS CUSTOMIZATION , 2015 .

[8]  Wilhelm Dietrich,et al.  Integrated Computer-Aided Design in Automotive Development , 2013 .

[9]  Erik Kaestner,et al.  The Mechanical Design Process , 2016 .

[10]  F. Piller,et al.  Cracking the Code of Mass Customization , 2009 .

[11]  Bob J. Wielinga,et al.  CommonKADS: a comprehensive methodology for KBS development , 1994, IEEE Expert.

[12]  Guido Hermans A Model for Evaluating the Solution Space of Mass Customization Toolkits , 2012 .

[13]  John P. McDermott,et al.  R1: A Rule-Based Configurer of Computer Systems , 1982, Artif. Intell..

[14]  Gunnar Erixon,et al.  Controlling Design Variants: Modular Product Platforms , 1999 .

[15]  Roland Lachmayer,et al.  KBE-Modeling Techniques in Standard CAD-Systems: Case Study—Autodesk Inventor Professional , 2017 .

[16]  Brigitte Moench,et al.  Engineering Design A Systematic Approach , 2016 .

[17]  Jörg Schlingheider Methodik zur Entwicklung rechnerunterstützter Konfigurationssysteme , 1994 .

[18]  Jordan J. Cox "Product Templates" A Parametric Approach to Mass Customization , 1998, CAD Tools and Algorithms for Product Design.

[19]  Roger Jianxin Jiao,et al.  Product family design and platform-based product development: a state-of-the-art review , 2007, J. Intell. Manuf..

[20]  Frank Steiner,et al.  Solution Space Development for Mass Customization. Impact of Continuous Product Change on Production Ramp-Up , 2014 .

[21]  Roland Lachmayer,et al.  OPERATIONALIZATION OF MANUFACTURING RESTRICTIONS FOR CAD AND KBE-SYSTEMS , 2016 .

[22]  John S. Gero,et al.  Design Prototypes: A Knowledge Representation Schema for Design , 1990, AI Mag..

[23]  Roland Lachmayer,et al.  Template-Based Modelling of Structural Components , 2017 .

[24]  Vladimir Hubka,et al.  Theorie technischer Systeme : Grundlagen einer wissenschaftlichen Konstruktionslehre , 1984 .

[25]  Jonathan Cagan,et al.  Computer-Based Design Synthesis Research: An Overview , 2011, J. Comput. Inf. Sci. Eng..

[26]  Sandro Wartzack,et al.  CAx für Ingenieure: Eine praxisbezogene Einführung , 2018 .

[27]  Nikola Suzic,et al.  Implementation guidelines for mass customization: current characteristics and suggestions for improvement , 2018, Production Planning & Control.

[28]  Gianfranco La Rocca,et al.  Knowledge based engineering: Between AI and CAD. Review of a language based technology to support engineering design , 2012, Adv. Eng. Informatics.

[29]  C. Weber Design Theory and Methodology - Contributions to the Computer Support of Product Development/Design Processes , 2011 .

[30]  Daniel Sabin,et al.  Product Configuration Frameworks - A Survey , 1998, IEEE Intell. Syst..

[31]  Michel Aldanondo,et al.  Configuration for mass customization: how to extend product configuration towards requirements and process configuration , 2008, J. Intell. Manuf..

[32]  Frank Rainer Hoisl Visual, Interactive 3D Spatial Grammars in CAD for Computational Design Synthesis , 2012 .

[33]  Roland Lachmayer,et al.  Forward Variance Planning and Modeling of Multi-variant Products , 2014 .

[34]  Guo Q. Huang,et al.  Design for X : concurrent engineering imperatives , 1996 .