Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.

Understanding and controlling the kinetics of O2 reduction in the presence of Li(+)-containing aprotic solvents, to either Li(+)-O2(-) by one-electron reduction or Li2 O2 by two-electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li-O2 batteries. Standard potentials of O2 /Li(+)-O2(-) and O2/O2(-) were experimentally measured and computed using a mixed cluster-continuum model of ion solvation. Increasing combined solvation of Li(+) and O2(-) was found to lower the coupling of Li(+)-O2(-) and the difference between O2/Li(+)-O2(-) and O2/O2(-) potentials. The solvation energy of Li(+) trended with donor number (DN), and varied greater than that of O2 (-) ions, which correlated with acceptor number (AN), explaining a previously reported correlation between Li(+)-O2(-) solubility and DN. These results highlight the importance of the interplay between ion-solvent and ion-ion interactions for manipulating the energetics of intermediate species produced in aprotic metal-oxygen batteries.

[1]  Viktor Gutmann,et al.  Solvent effects on the reactivities of organometallic compounds , 1976 .

[2]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[3]  K. Lau,et al.  Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries. , 2014, The journal of physical chemistry letters.

[4]  M. Watanabe,et al.  Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? , 2012, The journal of physical chemistry. B.

[5]  S. Seki,et al.  Unusual Li+ Ion Solvation Structure in Bis(fluorosulfonyl)amide Based Ionic Liquid , 2013 .

[6]  David G. Kwabi,et al.  Materials challenges in rechargeable lithium-air batteries , 2014 .

[7]  Yang Shao-Horn,et al.  Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries. , 2014, The journal of physical chemistry letters.

[8]  V. Viswanathan,et al.  Trade-Offs in Capacity and Rechargeability in Nonaqueous Li-O2 Batteries: Solution-Driven Growth versus Nucleophilic Stability. , 2015, The journal of physical chemistry letters.

[9]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[10]  Sanjeev Mukerjee,et al.  Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte , 2013 .

[11]  V. Gutmann,et al.  The acceptor number — A quantitative empirical parameter for the electrophilic properties of solvents , 1975 .

[12]  E. Plichta,et al.  Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries , 2012 .

[13]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[14]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[15]  E. Calvo,et al.  Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li–Air Battery , 2013 .

[16]  R. Tatara,et al.  Li(+) solvation in glyme-Li salt solvate ionic liquids. , 2015, Physical chemistry chemical physics : PCCP.

[17]  Michael J. Ziegler,et al.  Solvation of Metal Cations in Non-aqueous Liquids , 2011 .

[18]  Stefan A. Freunberger,et al.  Li-O2 battery with a dimethylformamide electrolyte. , 2012, Journal of the American Chemical Society.

[19]  G. Gritzner Solvent effects on half-wave potentials , 1986 .

[20]  D. Itkis,et al.  Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells , 2013, Beilstein journal of nanotechnology.

[21]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[22]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[23]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[24]  D. T. Sawyer,et al.  Effects of media and electrode materials on the electrochemical reduction of dioxygen , 1982 .

[25]  P. A. Lay,et al.  The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer , 1999 .

[26]  George M Whitesides,et al.  Don't Forget Long-Term Fundamental Research in Energy , 2007, Science.

[27]  Yang Shao-Horn,et al.  Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries , 2013 .

[28]  E. Calvo,et al.  A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing non aqueous electrolyte , 2013 .

[29]  L. Archer,et al.  Nucleation and Growth of Lithium Peroxide in the Li-O2 Battery. , 2015, Nano letters.

[30]  D. Maricle,et al.  Reducion of Oxygen to Superoxide Anion in Aprotic Solvents. , 1965 .

[31]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[32]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[33]  D. T. Sawyer,et al.  The chemistry of superoxide ion , 1979 .

[34]  Gregory V. Chase,et al.  The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries , 2012 .

[35]  Yuki Yamada,et al.  Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents , 2013 .

[36]  Linda F. Nazar,et al.  Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery , 2015 .

[37]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[38]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[39]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[40]  Jasim Uddin,et al.  A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. , 2013, Journal of the American Chemical Society.

[41]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[42]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[43]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[44]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[45]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[46]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[47]  Bryan D. McCloskey,et al.  On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries , 2012 .

[48]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[49]  Peter G. Bruce,et al.  Die Lithium‐Sauerstoff‐Batterie mit etherbasierten Elektrolyten , 2011 .

[50]  K. Abraham,et al.  Electronic Effects of Substituents on Redox Shuttles for Overcharge Protection of Li-ion Batteries , 2012 .

[51]  K. Abraham Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries , 2015 .