Linearization of rotations for globally consistent n-scan matching

The ICP (Iterative Closest Point) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of the algorithm is the minimization of an error function that takes point correspondences into account. While four closed-form solution methods are known for minimizing this function, linearization seems necessary for solving the global scan registration problem. This paper presents such linear solutions for registering n-scans in a global and simultaneous fashion. It studies parameterizations for the rigid body transformations of the n-scan registration problem.

[1]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[2]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[3]  Joachim Hertzberg,et al.  Globally consistent 3D mapping with scan matching , 2008, Robotics Auton. Syst..

[4]  Adrian Hilton,et al.  Registration of multiple point sets , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[5]  Andrew J. Stoddart,et al.  N-View Point Set Registration: A Comparison , 1999, BMVC.

[6]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Francis Schmitt,et al.  Fast global registration of 3D sampled surfaces using a multi-z-buffer technique , 1999, Image Vis. Comput..

[8]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[9]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Joachim Hertzberg,et al.  The Efficient Extension of Globally Consistent Scan Matching to 6 DoF , 2008 .

[11]  John B. Moore,et al.  Global registration of multiple 3D point sets via optimization-on-a-manifold , 2005, SGP '05.

[12]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[13]  H. Pottmann,et al.  SIMULTANEOUS REGISTRATION OF MULTIPLE VIEWS OF A 3 D OBJECT , 2002 .

[14]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[15]  Joachim Hertzberg,et al.  Benchmarking urban six‐degree‐of‐freedom simultaneous localization and mapping , 2008, J. Field Robotics.

[16]  Francis Schmitt,et al.  A Solution for the Registration of Multiple 3D Point Sets Using Unit Quaternions , 1998, ECCV.

[17]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[18]  Helmut Pottmann,et al.  Orientierung von Laserscanner-Punktwolken , 2003 .

[19]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[21]  Wolfram Burgard,et al.  Efficient estimation of accurate maximum likelihood maps in 3D , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.