Diet is Not Responsible for the Presence of Several Oxidatively Damaged DNA Lesions in Mouse Urine

In order to eliminate the possibility that diet may influence urinary oxidative DNA lesion levels, in our experiments we used a recently developed technique involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection. This methodology was applied for the determination of the lesions: 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and 5-(hydroxymethyl)uracil (5HMUra) in the urine of mice fed with nucleic acid free diet and normal, unrestricted diet. The mean levels of 8-oxoGua, 8-oxodGuo and 5HMUra of the animals fed the normal diet reached the mean values of [Formula: See Text], [Formula: See Text] and [Formula: See Text] After feeding the mice for 12 days with nucleic acid free diet the respective values were [Formula: See Text], [Formula: See Text] and [Formula: See Text] respectively. The results clearly demonstrate that irrespective of the diet, the excretion rates were not statistically different during the course of feeding. The respective p values for the differences between lesions in the two types of diets were: 0.13 (8-oxoGua), 0.16 (8-oxodGuo), 0.18 (5-HMUra). Our results clearly indicate that diet does not contribute to urinary excretion of the lesions in mouse model.

[1]  A. Klungland,et al.  Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. , 2004, Free radical biology & medicine.

[2]  M. Evans,et al.  Progress in the analysis of urinary oxidative DNA damage. , 2002, Free radical biology & medicine.

[3]  E. Seeberg,et al.  Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. , 2002, Nucleic acids research.

[4]  P. Jaruga,et al.  Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. , 2002, Free radical biology & medicine.

[5]  I. Thompson,et al.  A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. , 2001, Nucleic acids research.

[6]  K. Roszkowski,et al.  8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine levels in human urine do not depend on diet , 2001, Free radical research.

[7]  M. Evans,et al.  Urinary 8-oxo-2′-deoxyguanosine — Source, significance and supplements , 2000, Free radical research.

[8]  J. Cadet,et al.  Simultaneous determination of five oxidative DNA lesions in human urine. , 1999, Chemical research in toxicology.

[9]  G. Dianov,et al.  Repair Pathways for Processing of 8-Oxoguanine in DNA by Mammalian Cell Extracts* , 1998, The Journal of Biological Chemistry.

[10]  S. Mitra,et al.  The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. , 1998, Nucleic acids research.

[11]  Karol Bialkowski,et al.  A novel assay of 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium(II) inhibition of this activity , 1998, Nucleic Acids Res..

[12]  H. C. Yeo,et al.  DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Boiteux,et al.  Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae. , 1997, Biochimie.

[14]  C. Desmaze,et al.  Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  K. Sakumi,et al.  Generation and elimination of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate, a mutagenic substrate for DNA synthesis, in human cells. , 1995, Biochemistry.

[16]  B. Ames,et al.  Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B. Ames,et al.  Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. V. van Lier,et al.  Sensitized photo-oxidation of thymidine by 2-methyl-1,4-naphthoquinone. Characterization of the stable photoproducts. , 1986, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[19]  A. Sancar DNA repair in humans. , 1995, Annual review of genetics.

[20]  M. Dizdaroglu Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. , 1994, Methods in enzymology.