A walking pattern generator for biped robots on uneven terrains

We present a new method to generate biped walking patterns for biped robots on uneven terrains. Our formulation uses a universal stability criterion that checks whether the resultant of the gravity wrench and the inertia wrench of a robot lies in the convex cone of the wrenches resulting from contacts between the robot and the environment. We present an algorithm to compute the feasible acceleration of the robot's CoM (center of mass) and use that algorithm to generate biped walking patterns. Our approach is more general and applicable to uneven terrains as compared with prior methods based on the ZMP (zero-moment point) criterion. We highlight its applications on some benchmarks.

[1]  Jonghoon Park,et al.  General ZMP Preview Control for Bipedal Walking , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[3]  Masayuki Inaba,et al.  Footstep planning among obstacles for biped robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[4]  Timothy Bretl,et al.  Testing Static Equilibrium for Legged Robots , 2008, IEEE Transactions on Robotics.

[5]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Tsuneo Yoshikawa,et al.  FSW (feasible solution of wrench) for multi-legged robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Timothy Bretl,et al.  Motion Planning for Legged Robots on Varied Terrain , 2008, Int. J. Robotics Res..

[8]  Shuuji Kajita,et al.  ZMP analysis for arm/leg coordination , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[10]  Kazuhito Yokoi,et al.  Whole-Body Motion Generation Integrating Operator's Intention and Robot's Autonomy in Controlling Humanoid Robots , 2007, IEEE Transactions on Robotics.

[11]  Masayuki Inaba,et al.  Dynamically-Stable Motion Planning for Humanoid Robots , 2002, Auton. Robots.

[12]  Masayuki Inaba,et al.  Online footstep planning for humanoid robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Yu Zheng,et al.  Distance Between a Point and a Convex Cone in $n$ -Dimensional Space: Computation and Applications , 2009, IEEE Transactions on Robotics.

[14]  J. Chestnutt,et al.  Planning Biped Navigation Strategies in Complex Environments , 2003 .

[15]  Eiichi Yoshida,et al.  Integrating dynamics into motion planning for humanoid robots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  M. Vukobratovic,et al.  On the stability of anthropomorphic systems , 1972 .

[17]  Masayuki Inaba,et al.  A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot , 2002, Auton. Robots.

[18]  Hirochika Inoue,et al.  Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Shuuji Kajita,et al.  A universal stability criterion of the foot contact of legged robots - adios ZMP , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[20]  Weiwei Huang,et al.  Pattern generation for bipedal walking on slopes and stairs , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.