On the Shockley-Read-Hall Model: Generation-Recombination in Semiconductors

The Shockley–Read–Hall model for generation-recombination of electron-hole pairs in semiconductors based on a quasi-stationary approximation for electrons in a trapped state is generalized to distributed trapped states in the forbidden band and to kinetic transport models for electrons and holes. The quasi-stationary limit is rigorously justified both for the drift-diffusion and for the kinetic model.

[1]  Stéphane Mischler,et al.  On the Initial Boundary Value Problem for the Vlasov–Poisson–Boltzmann System , 2000 .

[2]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[3]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[4]  C. Schmeiser,et al.  Hydrodynamic Model for Charge Carriers Involving Strong Ionization in Semiconductors , 2000 .

[5]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[6]  P. Degond Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions , 1986 .

[7]  José A. Carrillo,et al.  Deterministic Numerical Simulation of 1d Kinetic Descriptions of Bipolar Electron Devices , 2006 .

[8]  Nader Masmoudi,et al.  Diffusion Limit of a Semiconductor Boltzmann-Poisson System , 2007, SIAM J. Math. Anal..

[9]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[10]  Pierre Degond,et al.  On a hierarchy of macroscopic models for semiconductors , 1996 .

[11]  F. Poupaud,et al.  On a system of nonlinear Boltzmann equations of semiconductor physics , 1990 .

[12]  H. Gajewski,et al.  On Existence, Uniqueness and Asymptotic Behavior of Solutions of the Basic Equations for Carrier Transport in Semiconductors , 1985 .

[13]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[14]  C. Schmeiser,et al.  Energy-Transport Models for Charge Carriers Involving Impact Ionization in Semiconductors , 2003 .

[15]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[16]  Christian Schmeiser,et al.  The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model , 2001, European Journal of Applied Mathematics.

[17]  S. Ukai,et al.  On classical solutions in the large in time of two-dimensional Vlasov's equation , 1978 .

[18]  J. Carrillo,et al.  Accurate Deterministic Numerical Simulation of p-n Junctions , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.