Cost aggregation with anisotropic diffusion in feature space for hybrid stereo matching
暂无分享,去创建一个
[1] Joost van de Weijer,et al. On the Equivalence of Local-Mode Finding, Robust Estimation and Mean-Shift Analysis as Used in Early Vision Tasks , 2002, ICPR.
[2] Richard Szeliski,et al. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.
[3] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Takeo Kanade,et al. A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[5] In-So Kweon,et al. Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..
[6] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[7] K. Prazdny,et al. Detection of binocular disparities , 2004, Biological Cybernetics.
[8] C. V. Jawahar,et al. Generalised correlation for multi-feature correspondence , 2002, Pattern Recognit..
[9] OLGA VEKSLER,et al. Dense Features for Semi-Dense Stereo Correspondence , 2002, International Journal of Computer Vision.
[10] Kwanghoon Sohn,et al. Cost Aggregation and Occlusion Handling With WLS in Stereo Matching , 2008, IEEE Transactions on Image Processing.
[11] Federico Tombari,et al. Classification and evaluation of cost aggregation methods for stereo correspondence , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[12] Alexei A. Efros,et al. Fast bilateral filtering for the display of high-dynamic-range images , 2002 .
[13] B JULESZ,et al. Binocular Depth Perception without Familiarity Cues , 1964, Science.