Precision limit of atomic magnetometers in the presence of spin-destruction collisions

Ultra sensitive detection and high precision measurement of magnetic fields have been of great importance for both fundamental physics and practical applications. Recent developments in the technology of atomic magnetometers have enabled the spin-exchange relaxation free (SERF) atomic magnetometers as the most sensitive devices for detecting and measuring static or quasi-static magnetic fields. In this paper, we analyze the effect of the most prominent relaxation mechanism (i.e., the spin-destruction collisions) on the precision of SERF magnetometers. For static magnetic fields, it is explicitly demonstrated how the spin-destruction collisions degrade the precision of the SERF magnetometers from the Heisenberg limit to the standard limit even with quantum resources being employed.

[1]  J. Llandro,et al.  Magnetic biosensor technologies for medical applications: a review , 2010, Medical & Biological Engineering & Computing.

[2]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[3]  G. Vasilakis,et al.  Precision measurements of spin interactions with high density atomic vapors , 2011 .

[4]  Y. Uchikawa,et al.  Development of a high spatial resolution SQUID magnetometer for biomagnetic measurement , 2003 .

[5]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[6]  M. Romalis,et al.  Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell , 2011 .

[7]  Pieter Kok,et al.  Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .

[8]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[9]  I Savukov,et al.  Magnetic-resonance imaging of the human brain with an atomic magnetometer. , 2013, Applied physics letters.

[10]  Jeff Bird,et al.  Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors [Emerging Opportunities for Localization and Tracking] , 2011, IEEE Wireless Communications.

[11]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[12]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[13]  Pavel Ripka,et al.  Advances in Magnetic Field Sensors , 2010, IEEE Sensors Journal.

[14]  A S Sørensen,et al.  Near-Heisenberg-limited atomic clocks in the presence of decoherence. , 2013, Physical review letters.

[15]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[16]  Itzhack Y. Bar-Itzhack,et al.  Satellite autonomous navigation based on magnetic field measurements , 1993 .

[17]  D. F. Kimball,et al.  Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? , 2004, Physical review letters.

[18]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[19]  D. Robbes,et al.  Highly sensitive magnetometers—a review , 2006 .

[20]  Erkki J. Brändas,et al.  Arrows of time and fundamental symmetries in chemical physics , 2013 .

[21]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[22]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[23]  D. Budker,et al.  Spin-Exchange-Relaxation-Free Magnetometry with Cs Vapor , 2007, 0708.1012.

[24]  M. Romalis,et al.  Subfemtotesla scalar atomic magnetometry using multipass cells. , 2012, Physical review letters.

[25]  Shenli Jia,et al.  Vacuum arc under axial magnetic fields: experimental and simulation research , 2014 .

[26]  V. Cirigliano,et al.  Low energy probes of physics beyond the standard model , 2009, 1304.0017.

[27]  S. J. Seltzer,et al.  Developments in alkali -metal atomic magnetometry , 2008 .

[28]  M. Livio Physics: Why symmetry matters , 2012, Nature.

[29]  T. D. Clark,et al.  Varactor tuned ultrahigh frequency SQUID magnetometer , 1980 .

[30]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[31]  P. Ledru,et al.  Geological modelling from field data and geological knowledge. Part II. Modelling validation using gravity and magnetic data inversion , 2008 .

[32]  M. Romalis,et al.  Nuclear spin gyroscope based on an atomic comagnetometer. , 2005, Physical review letters.

[33]  Morgan W. Mitchell,et al.  Sub-projection-noise sensitivity in broadband atomic magnetometry. , 2010, Physical review letters.

[34]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[35]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.