On Minimizing and Critical Sequences in Nonsmooth Optimization

Let f be a bounded below, lower semicontinuous function from a Banach space into $R\cup \{+\infty \}.$ We study the relationships between minimizing and critical sequences of f, where the criticality condition is given in terms of some subdifferential $\partial.$ Here the objective function f is not supposed to be convex or smooth. Our work extends that of Auslender and Crouzeix and that of Chou, Ng, and Pang.

[1]  Philip D. Loewen A mean value theorem for Fre´chet subgradients , 1994 .

[2]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[3]  Jonathan M. Borwein,et al.  The proximal normal formula in Banach space , 1987 .

[4]  A. Ioffe,et al.  ON SUBDIFFERENTIABILITY SPACES , 1983 .

[5]  Jean-Paul Penot,et al.  Subdifferential Calculus Without Qualification Assumptions , 1996 .

[6]  Alfred Auslender How to deal with the unbounded in optimization: Theory and algorithms , 1997, Math. Program..

[7]  Jean-Paul Penot,et al.  Metrically well-set minimization problems , 1992 .

[8]  J. Penot Proximal Mappings , 1998 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  A. Ioffe Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps , 1984 .

[11]  Jean-Paul Penot Miscellaneous incidences of convergence theories in optimization and nonlinear analysis I: Behavior of solutions , 1994 .

[12]  K. Ng,et al.  Partially ordered topological vector spaces , 1973 .

[13]  Hans Jarchow,et al.  Topological Vector Spaces , 1981 .

[14]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[15]  K. F. Ng,et al.  On Second-Order Directional Derivatives in Nonsmooth Optimization , 1995 .

[16]  G. H. H.,et al.  The Theory of Functions of a Real Variable and the Theory of Fourier's Series , 1907, Nature.

[17]  J. Penot,et al.  Mean-Value Theorem with Small Subdifferentials , 1997 .

[18]  Didier Aussel,et al.  Mean value property and subdifferential criteria for lower semicontinuous functions , 1995 .

[19]  J. Penot Conditioning convex and nonconvex problems , 1996 .

[20]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[21]  Shi Shu-zhong,et al.  A Generalization of Ekeland's ϵ-Variational Principle and Its Borwein–Preiss Smooth Variant , 2000 .

[22]  A. Auslender Convergence of stationary sequences for variational inequalities with maximal monotone operators , 1993 .

[23]  Jean-Paul Penot,et al.  Compactness Properties, Openness Criteria and Coderivatives , 1998 .

[24]  P. Angleraud Caractérisation duale du bon comportement de fonctions convexes , 1992 .

[25]  I. Ekeland Nonconvex minimization problems , 1979 .

[26]  R. Rockafellar,et al.  On the subdifferentiability of convex functions , 1965 .

[27]  Roberto Cominetti,et al.  Convex Functions with Unbounded Level Sets and Applications to Duality Theory , 1993, SIAM J. Optim..

[28]  R. DeVille,et al.  A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions , 1993 .

[29]  A. Auslender,et al.  Well Behaved Asymptotical Convex Functions , 1989 .

[30]  A. Peressini Ordered topological vector spaces , 1967 .

[31]  Diethard Klatte,et al.  Error bounds for solutions of linear equations and inequalities , 1995, Math. Methods Oper. Res..

[32]  J. Revalski Various Aspects of Well-Posedness of Optimization Problems , 1995 .

[33]  J. Penot,et al.  SUBDIFFERENTIALS OF PERFORMANCE FUNCTIONS AND CALCULUS OF CODERIVATIVES OF SET-VALUED MAPPINGS , 1996 .

[34]  J. Pang,et al.  Minimizing and Stationary Sequences of Constrained Optimization Problems , 1998 .

[35]  Philippe Michel,et al.  A generalized derivative for calm and stable functions , 1992, Differential and Integral Equations.

[36]  K. F. Ng,et al.  Second-order necessary and sufficient conditions in nonsmooth optimization , 1994, Math. Program..

[37]  A. Ioffe,et al.  On the local surjection property , 1987 .

[38]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[39]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.