Multigrid elliptic equation solver with adaptive mesh refinement

In this paper, we describe in detail the computational algorithm used by our parallel multigrid elliptic equation solver with adaptive mesh refinement. Our code uses truncation error estimates to adaptively refine the grid as part of the solution process. The presentation includes a discussion of the orders of accuracy that we use for prolongation and restriction operators to ensure second order accurate results and to minimize computational work. Code tests are presented that confirm the overall second order accuracy and demonstrate the savings in computational resources provided by adaptive mesh refinement.

[1]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[2]  Peter Diener,et al.  Adaptive mesh refinement approach to the construction of initial data for black hole collisions , 2000 .

[3]  An axisymmetric gravitational collapse code , 2003, gr-qc/0301006.

[4]  William H. Press,et al.  Numerical recipes , 1990 .

[5]  Wolfgang Tichy,et al.  Numerical simulation of orbiting black holes. , 2004, Physical review letters.

[6]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[7]  Brügmann Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions. , 1996, Physical review. D, Particles and fields.

[8]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[9]  J. D. Brown,et al.  Evolving a Puncture Black Hole with Fixed Mesh Refinement , 2004, gr-qc/0403048.

[10]  Toward stable 3D numerical evolutions of black-hole spacetimes , 2002, gr-qc/0209115.

[11]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[12]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[13]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[14]  Critical collapse of the massless scalar field in axisymmetry , 2003, gr-qc/0305003.

[15]  M. Choptuik,et al.  Universality and scaling in gravitational collapse of a massless scalar field. , 1993, Physical review letters.

[16]  S. McCormick,et al.  The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .

[17]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[18]  Energy norms and the stability of the Einstein evolution equations , 2002, gr-qc/0206035.

[19]  Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[20]  Peter MacNeice,et al.  Interface conditions for wave propagation through mesh refinement boundaries , 2004 .

[21]  Binary Black Hole Mergers in 3d Numerical Relativity , 1997, gr-qc/9708035.

[22]  Achi Brandt,et al.  Local mesh refinement multilevel techniques , 1987 .

[23]  Bernd Bruegmann,et al.  A Simple Construction of Initial Data for Multiple Black Holes , 1997 .