Frequency Locking on the Boundary of the Barycentre Set
暂无分享,去创建一个
[1] Philip Boyland,et al. Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals , 1986 .
[2] P. Shiu. An introduction to the theory of numbers (5th edition) , by I. Niven, H. S. Zuckerman and H. L. Montgomery. Pp 529. £14·50. 1991. ISBN 0-471-5460031 (Wiley) , 1991 .
[3] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[4] P. Walters. Introduction to Ergodic Theory , 1977 .
[5] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[6] Peter Veerman,et al. Symbolic dynamics of order-preserving orbits , 1987 .
[7] Thierry Bousch,et al. Le poisson n'a pas d'arêtes , 2000 .
[8] Caroline Series,et al. The geometry of markoff numbers , 1985 .
[9] Peter Veerman,et al. Symbolic dynamics and rotation numbers , 1986 .
[10] Jean Berstel,et al. Recent Results on Sturmian Words , 1995, Developments in Language Theory.
[11] Floris Takens,et al. Bifurcations and stability of families of diffeomorphisms , 1983 .
[12] O. Jenkinson. Conjugacy rigidity, cohomological triviality and barycentres of invariant measures , 1996 .
[13] Oscar E. Lanford,et al. Dynamique symbolique des rotations , 1984 .
[14] Ott,et al. Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] Tom C. Brown,et al. Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.
[16] Shaun Bullett,et al. Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.