Modeling microstructural development during the forging of Waspaloy

A model for predicting the evolution of microstructure in Waspaloy during thermomechanical proc-essing was developed in terms of dynamic recrystallization (DRX), metadynamic recrystallization, and grain growth phenomena. Three sets of experiments were conducted to develop the model: (1) preheating tests to model grain growth prior to hot deformation; (2) compression tests in a Gleeble testing machine with different deformation and cooling conditions to model DRX, metadynamic recrystallization, and short time grain growth during the post deformation dwell period and cooling; and (3) pancake and closed die forging tests conducted in a manufacturing environment to verify and refine the model. The microstructural model was combined with finite element modeling (FEM) to predict microstructure development during forging of Waspaloy. Model predictions showed good agreement with microstructures obtained in actual isothermal and hammer forgings carried out at a forging shop.