Quantum computation with realistic magic-state factories

Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012)] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10^−4 error gates and the availability of long-range interactions.

[1]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[2]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[3]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[4]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[5]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[6]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[7]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[8]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[9]  David Poulin,et al.  Reducing the quantum-computing overhead with complex gate distillation , 2014, 1403.5280.

[10]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[11]  Earl T Campbell,et al.  Enhanced fault-tolerant quantum computing in d-level systems. , 2014, Physical review letters.

[12]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[13]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[14]  H. Bombin,et al.  Self-correcting quantum computers , 2009, 0907.5228.

[15]  Earl T. Campbell,et al.  AN INTRODUCTION TO ONE-WAY QUANTUM COMPUTING IN DISTRIBUTED ARCHITECTURES , 2009, 0906.2725.

[16]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[17]  Simon J. Devitt,et al.  Lattice surgery translation for quantum computation , 2016, 1608.05208.

[18]  Mark Howard,et al.  Unifying Gate Synthesis and Magic State Distillation. , 2016, Physical review letters.

[19]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[20]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[21]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[22]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[23]  Raymond Laflamme,et al.  Using concatenated quantum codes for universal fault-tolerant quantum gates. , 2013, Physical review letters.

[24]  H. Bombin,et al.  Topological subsystem codes , 2009, 0908.4246.

[25]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[26]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[27]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[28]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[29]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[30]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[31]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[32]  Krysta Marie Svore,et al.  A State Distillation Protocol to Implement Arbitrary Single-qubit Rotations , 2012, ArXiv.

[33]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[34]  L. Hollenberg,et al.  Scalable Error Correction in Distributed Ion Trap Computers , 2006, quant-ph/0606226.

[35]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[36]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[37]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[38]  Simon C Benjamin,et al.  Measurement-based entanglement under conditions of extreme photon loss. , 2007, Physical review letters.

[39]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[40]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[41]  Earl T. Campbell,et al.  An efficient magic state approach to small angle rotations , 2016, 1603.04230.

[42]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[43]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.