Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.

The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) can be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale two-dimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. Employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.

[1]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[2]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[3]  Phanish Suryanarayana,et al.  SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Isolated clusters , 2016, Comput. Phys. Commun..

[4]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[5]  Franz Franchetti,et al.  Large-Scale First-Principles Molecular Dynamics simulations on the BlueGene/L Platform using the Qbox code , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[6]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[7]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[8]  H. Rutishauser Computational aspects of F. L. Bauer's simultaneous iteration method , 1969 .

[9]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[10]  Jean-Luc Fattebert,et al.  Linear-scaling first-principles molecular dynamics with plane-waves accuracy , 2006 .

[11]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[12]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[13]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[14]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[15]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[16]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[17]  M. Ortiz,et al.  Non-periodic finite-element formulation of Kohn–Sham density functional theory , 2010 .

[18]  Yousef Saad,et al.  Self-consistent-field calculations using Chebyshev-filtered subspace iteration , 2006, J. Comput. Phys..

[19]  Benjamin Stamm,et al.  A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions. Part II: Eigenvalue problems , 2016, 1603.04456.

[20]  Jorge Kohanoff,et al.  Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods , 2006 .

[21]  Ernest R. Davidson,et al.  Super-matrix methods , 1989 .

[22]  Richard D. James,et al.  A spectral scheme for Kohn-Sham density functional theory of clusters , 2014, J. Comput. Phys..

[23]  Benjamin Stamm,et al.  A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE , 2015, 1502.01738.

[24]  Yousef Saad,et al.  A spectrum slicing method for the Kohn-Sham problem , 2012, Comput. Phys. Commun..

[25]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[26]  Franccois Bottin,et al.  Large scale ab initio calculations based on three levels of parallelization , 2007, 0707.3405.

[27]  Amartya S. Banerjee,et al.  Density functional methods for objective structures: theory and simulation schemes , 2013 .

[28]  Chao Yang,et al.  Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory. , 2015, Physical chemistry chemical physics : PCCP.

[29]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for Kohn-Sham density functional theory , 2012, J. Comput. Phys..

[30]  Chao Yang,et al.  A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory , 2014, 1401.0920.

[31]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[32]  Aihui Zhou,et al.  Adaptive Finite Element Approximations for Kohn-Sham Models , 2013, Multiscale Model. Simul..

[33]  Chao Yang,et al.  Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Phanish Suryanarayana,et al.  Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations , 2015, 1512.01604.

[35]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[36]  Jaeyoung Choi,et al.  A Proposal for a Set of Parallel Basic Linear Algebra Subprograms , 1995, PARA.

[37]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[38]  H. Rutishauser Simultaneous iteration method for symmetric matrices , 1970 .

[39]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[40]  Chao Yang,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations , 2012, J. Comput. Phys..

[41]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[42]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[43]  Chao Yang,et al.  A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix , 2014, J. Comput. Phys..

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  Joost VandeVondele,et al.  Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase. , 2012, Journal of chemical theory and computation.

[46]  Yousef Saad,et al.  Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn-Sham equation , 2014, J. Comput. Phys..

[47]  Y. Saad,et al.  Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Phanish Suryanarayana,et al.  Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures , 2016, 1605.08924.

[49]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[50]  Zhaojun Bai,et al.  Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations , 2013, J. Comput. Phys..

[51]  Nicholas D. M. Hine,et al.  Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with ONETEP , 2009, Comput. Phys. Commun..

[52]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[53]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[54]  Louis G. Birta,et al.  Modelling and Simulation , 2013, Simulation Foundations, Methods and Applications.

[55]  Antoine Levitt,et al.  Parallel eigensolvers in plane-wave Density Functional Theory , 2014, Comput. Phys. Commun..

[56]  Chao Yang,et al.  SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[58]  Eric Shea-Brown,et al.  Reliability of Layered Neural Oscillator Networks , 2008 .

[59]  F. L. Bauer Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .

[60]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[61]  Chao Yang,et al.  DGDFT: A massively parallel method for large scale density functional theory calculations. , 2015, The Journal of chemical physics.

[62]  Hong Guo,et al.  RESCU: A real space electronic structure method , 2015, J. Comput. Phys..

[63]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[64]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[65]  François Gygi,et al.  Architecture of Qbox: A scalable first-principles molecular dynamics code , 2008, IBM J. Res. Dev..

[66]  Richard M. Martin,et al.  Improved accuracy and acceleration of variational order-N electronic-structure computations by projection techniques , 1998 .

[67]  P. Giannozzi,et al.  Towards Very Large-Scale Electronic-Structure Calculations , 1992 .