Functional characterization of Vip3Ab1 and Vip3Bc1: Two novel insecticidal proteins with differential activity against lepidopteran pests

[1]  Thomas L. Williams,et al.  The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis , 2017, Toxins.

[2]  N. Banyuls,et al.  Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis , 2017, Toxins.

[3]  N. Crickmore Bacillus thuringiensis Toxin Classification , 2017 .

[4]  N. Crickmore,et al.  Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. , 2017, Journal of invertebrate pathology.

[5]  J. Torres,et al.  Conditions for homogeneous preparation of stable monomeric and oligomeric forms of activated Vip3A toxin from Bacillus thuringiensis , 2017, European Biophysics Journal.

[6]  C. Chen,et al.  Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Bacillus thuringiensis on Spodoptera litura. , 2016, Journal of microbiology and biotechnology.

[7]  S. Sellami,et al.  Effect of adding amino acids residues in N‐ and C‐terminus of Vip3Aa16 (L121I) toxin , 2016, Journal of basic microbiology.

[8]  N. Banyuls,et al.  Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria , 2016, Microbiology and Molecular Reviews.

[9]  Ziniu Yu,et al.  Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins , 2014, Toxins.

[10]  S. Caccia,et al.  Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. , 2014, Journal of insect physiology.

[11]  J. Ferré,et al.  In Vivo and In Vitro Binding of Vip3Aa to Spodoptera frugiperda Midgut and Characterization of Binding Sites by 125I Radiolabeling , 2014, Applied and Environmental Microbiology.

[12]  Y. Bi,et al.  Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae , 2014, Applied Microbiology and Biotechnology.

[13]  S. Jaoua,et al.  Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. , 2013, Journal of invertebrate pathology.

[14]  C. S. Hernández-Rodríguez,et al.  Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. , 2013, Journal of invertebrate pathology.

[15]  M. Soberón,et al.  Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. , 2013, FEMS microbiology reviews.

[16]  S. Gayen,et al.  Identification of the bioactive core component of the insecticidal Vip3A toxin peptide of Bacillus thuringiensis , 2012, Journal of Plant Biochemistry and Biotechnology.

[17]  S. Caccia,et al.  Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. , 2012, Journal of invertebrate pathology.

[18]  Shuangcheng Li,et al.  Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene. , 2011, FEMS microbiology letters.

[19]  J. Liu,et al.  Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. , 2011, Journal of invertebrate pathology.

[20]  S. Jaoua,et al.  Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin. , 2011, Journal of invertebrate pathology.

[21]  J. Jurat-Fuentes,et al.  Binding Sites for Bacillus thuringiensis Cry2Ae Toxin on Heliothine Brush Border Membrane Vesicles Are Not Shared with Cry1A, Cry1F, or Vip3A Toxin , 2011, Applied and Environmental Microbiology.

[22]  S. Jaoua,et al.  Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. , 2011, Journal of invertebrate pathology.

[23]  J. Sena,et al.  Interaction of Bacillus thuringiensis Cry1 and Vip3A Proteins with Spodoptera frugiperda Midgut Binding Sites , 2009, Applied and Environmental Microbiology.

[24]  Kongming Wu,et al.  Bacillus thuringiensis Vip3 mutant proteins: Insecticidal activity and trypsin sensitivity , 2007 .

[25]  Qiyu Bao,et al.  Evidence for positive Darwinian selection of Vip gene in Bacillus thuringiensis. , 2007, Journal of genetics and genomics = Yi chuan xue bao.

[26]  A. Shelton,et al.  Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins , 2006, Applied and Environmental Microbiology.

[27]  M. K. Lee,et al.  Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. , 2006, Biochemical and biophysical research communications.

[28]  R. Frutos,et al.  Novel Vip3-Related Protein from Bacillus thuringiensis , 2005, Applied and Environmental Microbiology.

[29]  T. Ramseier,et al.  Heterologous Protein Production in P . fluorescens , 2004 .

[30]  Colin Berry,et al.  Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. , 2003, Annual review of genetics.

[31]  J. Yu,et al.  Comparison of the expression of Bacillus thuringiensis full‐length and N‐terminally truncated vip3A gene in Escherichia coli , 2003, Journal of applied microbiology.

[32]  F. S. Walters,et al.  The Mode of Action of the Bacillus thuringiensis Vegetative Insecticidal Protein Vip3A Differs from That of Cry1Ab δ-Endotoxin , 2003, Applied and Environmental Microbiology.

[33]  S. K. Jalali,et al.  Toxicity Analysis of N- and C-Terminus-Deleted Vegetative Insecticidal Protein from Bacillus thuringiensis , 2001, Applied and Environmental Microbiology.

[34]  R. D. de Maagd,et al.  How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. , 2001, Trends in genetics : TIG.

[35]  N. Seidah,et al.  Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides 1 Published on the World Wide Web on 17 August 1999. 1 , 1999, Brain Research.

[36]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[37]  N. Crickmore,et al.  Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[38]  M. Koziel,et al.  The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects , 1997, Applied and environmental microbiology.

[39]  M. Koziel,et al.  Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Purcell,et al.  Examination of midgut luminal proteinase activities in six economically important insects , 1992 .