Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes
暂无分享,去创建一个
Dajiang J. Liu | Ryan W. Kim | May E. Montasser | Nicholette D. Palmer | Y. J. Kim | Sarah C. Nelson | J. Danesh | M. Fornage | C. Gieger | A. Reiner | M. McCarthy | S. Redline | H. Kang | R. Gibbs | E. Boerwinkle | T. Hansen | O. Pedersen | N. Grarup | L. Groop | M. Laakso | J. O’Connell | M. Boehnke | D. Weeks | N. Samani | Y. Teo | D. Muzny | P. Ellinor | R. Vasan | R. Duggirala | J. Blangero | T. Wong | E. Tai | W. So | D. Rader | K. Small | T. Meitinger | H. Schunkert | B. Psaty | G. Metcalf | J. Flannick | Michael H. Preuss | K. Mohlke | L. Bonnycastle | C. Willer | J. Tuomilehto | V. Lyssenko | N. Burtt | S. Kathiresan | J. Florez | O. Melander | M. Orho-Melander | T. Tuomi | K. Taylor | J. Rotter | R. Sladek | L. Becker | D. Ardissino | C. Aguilar-Salinas | R. Chowdhury | R. DeFronzo | H. Doddapaneni | B. Cade | J. Brody | J. Meigs | L. Bielak | P. Peyser | Jianjun Liu | A. Stilp | M. Udler | L. Cupples | Xiuqing Guo | J. Broome | C. Schurmann | R. McPherson | N. Gupta | P. Natarajan | L. Orozco | G. Peloso | H. Watkins | James G. Wilson | J. Bis | Seonwook Lee | R. Kim | Jeong-Sun Seo | S. Rich | S. Kardia | W. Post | D. Arnett | Ching-Yu Cheng | X. Sim | L. Yanek | A. Correa | J. Kuusisto | N. Palmer | D. Bowden | B. Freedman | R. V. van Dam | T. Kelly | C. Kooperberg | A. Morrison | G. Jarvik | C. Ballantyne | S. Dutcher | R. Loos | C. Palmer | M. Montasser | Y. Hung | E. Kenny | R. Mathias | J. Curran | A. Linneberg | J. Peralta | M. Bown | N. Heard-Costa | S. Lubitz | M. Graff | L. Lange | D. Witte | S. Germer | Bong-Jo Kim | Juyoung Lee | N. Barzilai | S. Kwak | E. Chan | F. Thameem | H. Koistinen | Q. Qi | D. Lehman | G. Atzmon | C. Hanis | H. Moreno-Macías | S. Graham | Jiang He | S. Aslibekyan | Daekwan Seo | M. Irvin | T. Tusié-Luna | H. García-Ortiz | A. Martinez-Hernandez | Minxian Wang | S. Nelson | M. Chaffin | F. Barajas-Olmos | Joseph Park | P. D. de Vries | B. Tomlinson | Clicerio Gonzalez | R. Lemaitre | Xuzhi Wang | Sohee Han | Benjamin Glaser | Peter M. Nilsson | K. Park | Federico Centeno-Cruz | C. Contreras-Cubas | M. Garay-Sevilla | E. Mendoza-Caamal | C. Revilla-Monsalve | M. Y. Hwang | M. González-Villalpando | S. Islas-Andrade | Yi-Cheng Chang | Jee-Young Moon | G. Hindy | M. Tsai | L. Martin | L. Emery | Jiwon Lee | Fei Fei Wang | Alyna T Khan | M. Selvaraj | C. Tam | Xuenan Mi | P. Dornbos | Won Jung Choi | S. McGarvey | Erwin Bottinger | A. Khera | D. C. Rao | L. Antonacci-Fulton | Y. Chen | E. Córdova | Valentín Fuster | C. Park | Ronald C. W. Ma | David Y. Zhang | Karine A. Viaud Martinez | W. Choi | Rajiv Chowdhury | Teresa Tusié-Luna | F. Wang | David Zhang | B. Glaser | B. Psaty | S. Kardia | D. Muzny | R. Loos | M. McCarthy | T. Wong | T. Wong | T. Hansen | K. Taylor
[1] Alexander E. Lopez,et al. Advancing Human Genetics Research and Drug Discovery through Exome Sequencing of the UK Biobank , 2020, medRxiv.
[2] Brian E. Cade,et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.
[3] Alexander E. Lopez,et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank , 2020, Nature.
[4] J. Danesh,et al. HeterozygousABCG5Gene Deficiency and Risk of Coronary Artery Disease , 2020, Circulation: Genomic and Precision Medicine.
[5] Brent D. Davis,et al. Loss-of-Function CREB3L3 Variants in Patients With Severe Hypertriglyceridemia , 2020, Arteriosclerosis, thrombosis, and vascular biology.
[6] Ryan L. Collins,et al. The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.
[7] T. Ideker,et al. Thousands of missing variants in the UK BioBank are recoverable by genome realignment , 2019, bioRxiv.
[8] Broad Genomics Platform,et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls , 2019 .
[9] Stephanie A. Bien,et al. Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.
[10] Tanya M. Teslovich,et al. Rare Protein-Truncating Variants in APOB, Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease , 2019, Circulation. Genomic and precision medicine.
[11] David G. Knowles,et al. Predicting Splicing from Primary Sequence with Deep Learning , 2019, Cell.
[12] M. Garabedian,et al. Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease , 2019, Cell reports.
[13] Zoltán Kutalik,et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits , 2019, Nature Communications.
[14] Tanya M. Teslovich,et al. Genetics of Blood Lipids Among ~300,000 Multi-Ethnic Participants of the Million Veteran Program , 2018, Nature Genetics.
[15] S. Larsson,et al. Role of Blood Lipids in the Development of Ischemic Stroke and its Subtypes , 2018, Stroke.
[16] Shiqi Zhang,et al. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes , 2018, Front. Immunol..
[17] Pim van der Harst,et al. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease , 2017, Circulation research.
[18] David S. Wishart,et al. DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..
[19] May E. Montasser,et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals , 2017, Nature Communications.
[20] Raquel S. Sevilla,et al. Exome-wide association study of plasma lipids in >300,000 individuals , 2017, Nature Genetics.
[21] Kathleen F. Kerr,et al. Association of Triglyceride-Related Genetic Variants With Mitral Annular Calcification. , 2017, Journal of the American College of Cardiology.
[22] Tanya M. Teslovich,et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease , 2017, The New England journal of medicine.
[23] A. Keech,et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease , 2017, The New England journal of medicine.
[24] Marylyn D. Ritchie,et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study , 2016, Science.
[25] Xiangdong Fu,et al. Liver-Specific Deletion of SRSF2 Caused Acute Liver Failure and Early Death in Mice , 2016, Molecular and Cellular Biology.
[26] F. Cunningham,et al. The Ensembl Variant Effect Predictor , 2016, bioRxiv.
[27] Alexander E. Lopez,et al. Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. , 2016, The New England journal of medicine.
[28] E. Boerwinkle,et al. dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.
[29] Xiaowei Zhan,et al. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data , 2016, Bioinform..
[30] Anders Albrechtsen,et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies , 2016, Nature Genetics.
[31] C. Barbagallo,et al. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia , 2015, Arteriosclerosis, thrombosis, and vascular biology.
[32] D. Gaudet,et al. Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. , 2015, The New England journal of medicine.
[33] R. Gibbs,et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. , 2015, Human molecular genetics.
[34] B. Geng,et al. Perilipin1 Deficiency in Whole Body or Bone Marrow-Derived Cells Attenuates Lesions in Atherosclerosis-Prone Mice , 2015, PloS one.
[35] Andrew D. Johnson,et al. Multiple rare alleles at LDLR and APOA5 confer risk for early-onset myocardial infarction , 2014, Nature.
[36] Vilmundur Gudnason,et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. , 2014, JAMA.
[37] Pierre Fontanillas,et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes , 2014, Proceedings of the National Academy of Sciences.
[38] B. Cummings,et al. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. , 2014, Biochemical pharmacology.
[39] B. Nordestgaard,et al. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. , 2014, The New England journal of medicine.
[40] He Zhang,et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. , 2014, The New England journal of medicine.
[41] Peter Tontonoz,et al. Liver X receptors in lipid metabolism: opportunities for drug discovery , 2014, Nature Reviews Drug Discovery.
[42] Jennifer G. Robinson,et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. , 2014, American journal of human genetics.
[43] Dajiang J. Liu,et al. Meta-Analysis of Gene Level Tests for Rare Variant Association , 2013, Nature Genetics.
[44] G. Caridi,et al. Congenital analbuminaemia: molecular defects and biochemical and clinical aspects. , 2013, Biochimica et Biophysica Acta.
[45] Tanya M. Teslovich,et al. Common variants associated with plasma triglycerides and risk for coronary artery disease , 2013, Nature Genetics.
[46] Tanya M. Teslovich,et al. Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.
[47] Tom R. Gaunt,et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. , 2012, American journal of human genetics.
[48] John Spertus,et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study , 2012, The Lancet.
[49] C. Cole,et al. COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.
[50] Xihong Lin,et al. Rare-variant association testing for sequencing data with the sequence kernel association test. , 2011, American journal of human genetics.
[51] R. Hegele,et al. The transcription factor cyclic AMP–responsive element–binding protein H regulates triglyceride metabolism , 2011, Nature Medicine.
[52] S. O’Rahilly,et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. , 2011, The New England journal of medicine.
[53] B. Smedsrød,et al. Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized low-density lipoproteins. , 2011, American journal of physiology. Gastrointestinal and liver physiology.
[54] Jonathan C. Cohen,et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. , 2010, The New England journal of medicine.
[55] Tanya M. Teslovich,et al. Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.
[56] Karin Dahlman-Wright,et al. Liver X receptor in cholesterol metabolism. , 2010, Journal of Endocrinology.
[57] J. Danesh,et al. Major lipids, apolipoproteins, and risk of vascular disease. , 2009, JAMA.
[58] P. Ridker,et al. Forty-Three Loci Associated with Plasma Lipoprotein Size, Concentration, and Cholesterol Content in Genome-Wide Analysis , 2009, PLoS genetics.
[59] G. Shulman,et al. AdPLA ablation increases lipolysis and prevents obesity induced by high fat feeding or leptin deficiency , 2009, Nature Medicine.
[60] Vidya Subramanian,et al. Perilipin A and the control of triacylglycerol metabolism , 2009, Molecular and Cellular Biochemistry.
[61] J. O’Connell,et al. A Null Mutation in Human APOC3 Confers a Favorable Plasma Lipid Profile and Apparent Cardioprotection , 2008, Science.
[62] S. Kathiresan. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. , 2008, The New England journal of medicine.
[63] A. Mokdad,et al. Does the association of the triglyceride to high-density lipoprotein cholesterol ratio with fasting serum insulin differ by race / ethnicity ? , 2008 .
[64] S. O’Rahilly,et al. Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance , 2006, Cell metabolism.
[65] E. Tai,et al. The V227A polymorphism at the PPARA locus is associated with serum lipid concentrations and modulates the association between dietary polyunsaturated fatty acid intake and serum high density lipoprotein concentrations in Chinese women. , 2006, Atherosclerosis.
[66] Jonathan C. Cohen,et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. , 2006, The New England journal of medicine.
[67] Alexander Pertsemlidis,et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.
[68] R. Houwen,et al. Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review , 2004, European Journal of Pediatrics.
[69] Tracey McLaughlin,et al. Use of Metabolic Markers To Identify Overweight Individuals Who Are Insulin Resistant , 2003, Annals of Internal Medicine.
[70] S. O’Rahilly,et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension , 1999, Nature.
[71] S. Goerdt,et al. Identification of a novel high molecular weight protein preferentially expressed by sinusoidal endothelial cells in normal human tissues , 1991, The Journal of cell biology.