Sensing, processing and analytics: augmenting the Ubicon platform for anticipatory ubiquitous computing

Anticipatory systems require different steps like sensing, data processing, context inference, and context prediction. Then, suitable platforms can support the implementation of the respective steps. This paper proposes an anticipatory ubiquitous perspective on the Ubicon platform, considering data capture (sensing), localization (context inference) and activity recognition (context prediction), enabled by an integration of different technologies and tools. In an integrated approach, we propose different components for augmenting the Ubicon platform. For these, we present results of respective case studies in ubiquitous and social environments. Our results demonstrate the applicability of the Ubicon platform for these tasks, towards an extended platform for anticipatory ubiquitous computing.

[1]  Frank Puppe,et al.  Meta-Level Information Extraction , 2009, LWA.

[2]  Frank Puppe,et al.  Rule-Based Information Extraction for Structured Data Acquisition using TextMarker , 2008, LWA.

[3]  Ciro Cattuto,et al.  Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks , 2010, PloS one.

[4]  Gerd Stumme,et al.  Unsupervised and Hybrid Approaches for On-line RFID Localization with Mixed Context Knowledge , 2014, ISMIS.

[5]  Stefan Wrobel,et al.  An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.

[6]  Gerd Stumme,et al.  Anatomy of a conference , 2012, HT '12.

[7]  Dominik Benz,et al.  Enhancing Social Interactions at Conferences , 2011, it Inf. Technol..

[8]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[9]  M. Atzmueller Subgroup Discovery – Advanced Review , 2015 .

[10]  Ian Witten,et al.  Data Mining , 2000 .

[11]  Florian Lemmerich,et al.  VIKAMINE - Open-Source Subgroup Discovery, Pattern Mining, and Analytics , 2012, ECML/PKDD.

[12]  Andreas Hotho,et al.  Ubicon and its applications for ubiquitous social computing , 2014, New Rev. Hypermedia Multim..

[13]  Martin Atzmüller,et al.  The Mining and Analysis Continuum of Explaining Uncovered , 2010, SGAI Conf..

[14]  Nathan Marz,et al.  Big Data: Principles and best practices of scalable realtime data systems , 2015 .

[15]  Andreas Hotho,et al.  Face-to-Face Contacts at a Conference: Dynamics of Communities and Roles , 2011, MSM/MUSE.

[16]  Carles Gomez,et al.  Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology , 2012, Sensors.

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[19]  Ciro Cattuto,et al.  New Insights and Methods For Predicting Face-To-Face Contacts , 2013, ICWSM.

[20]  Martin Atzmüller,et al.  Subgroup discovery , 2005, Künstliche Intell..

[21]  Andreas Hotho,et al.  Resource-Aware On-line RFID Localization Using Proximity Data , 2011, ECML/PKDD.

[22]  Willi Klösgen,et al.  Explora: A Multipattern and Multistrategy Discovery Assistant , 1996, Advances in Knowledge Discovery and Data Mining.

[23]  Martin Atzmüller,et al.  Towards capturing social interactions with SDCF: an extensible framework for mobile sensing and ubiquitous data collection , 2013, MSM '13.

[24]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[25]  Martin Atzmüller,et al.  Adaptive Class Association Rule Mining for Human Activity Recognition , 2015, MUSE@PKDD/ECML.

[26]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .