Why you can't build an arbiter

I give a formal proof that you can't build an arbiter. The proof method gives bounds which show that at best one can arbitrate between two signals arriving e seconds apart in time O(ln(1/e)). I construct a simple, idealized device which achieves this optimal performance.

[1]  Charles E. Molnar,et al.  Anomalous Behavior of Synchronizer and Arbiter Circuits , 1973, IEEE Transactions on Computers.

[2]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[3]  Marco Hurtado,et al.  Ambiguous Behavior of Logic Bistable Systems , 1975 .

[4]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[5]  Miroslav Pechoucek,et al.  Anomalous Response Times of Input Synchronizers , 1976, IEEE Transactions on Computers.

[6]  Leonard R. Marino,et al.  General theory of metastable operation , 1981, IEEE Transactions on Computers.

[7]  Brian W. Johnson,et al.  Equivalence of the Arbiter, the Synchronizer, the Latch, and the Inertial Delay , 1983, IEEE Transactions on Computers.

[8]  S. T. Flannagan,et al.  Synchronization reliability in CMOS technology , 1985 .

[9]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[10]  Antonio Cantoni,et al.  On the Unavoidability of Metastable Behavior in Digital Systems , 1987, IEEE Transactions on Computers.

[11]  Stephen A. Ward,et al.  A Solution to a Special Case of the Synchronization Problem , 1988, IEEE Trans. Computers.

[12]  V. Varshavsky Anomalous Behaviour of Logical Circuits and the Arbitration Problem , 1990 .

[13]  Robert H. Halstead,et al.  Computation structures , 1990, MIT electrical engineering and computer science series.

[14]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[15]  Roger W. Brockett,et al.  Hybrid Models for Motion Control Systems , 1993 .

[16]  Michael Mendler,et al.  Newtonian arbiters cannot be proven correct , 1993, Formal Methods Syst. Des..

[17]  Michael S. Branicky,et al.  Universal Computation and Other Capabilities of Hybrid and Continuous Dynamical Systems , 1995, Theor. Comput. Sci..