Term feedback for information retrieval with language models

In this paper we study term-based feedback for information retrieval in the language modeling approach. With term feedback a user directly judges the relevance of individual terms without interaction with feedback documents, taking full control of the query expansion process. We propose a cluster-based method for selecting terms to present to the user for judgment, as well as effective algorithms for constructing refined query language models from user term feedback. Our algorithms are shown to bring significant improvement in retrieval accuracy over a non-feedback baseline, and achieve comparable performance to relevance feedback. They are helpful even when there are no relevant documents in the top.

[1]  James Allan,et al.  Relevance feedback with too much data , 1995, SIGIR '95.

[2]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[3]  Amanda Spink,et al.  Term relevance feedback and query expansion: relation to design , 1994, SIGIR '94.

[4]  K. Sparck Jones,et al.  A Probabilistic Model of Information Retrieval : Development and Status , 1998 .

[5]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[6]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[7]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[8]  Xin Fu,et al.  The loquacious user: a document-independent source of terms for query expansion , 2005, SIGIR '05.

[9]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[10]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[11]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[12]  ChengXiang Zhai,et al.  Active feedback in ad hoc information retrieval , 2005, SIGIR '05.

[13]  Peter G. Anick Using terminological feedback for web search refinement: a log-based study , 2003, SIGIR.

[14]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[15]  Peter G. Anick,et al.  The paraphrase search assistant: terminological feedback for iterative information seeking , 1999, SIGIR '99.

[16]  James Allan,et al.  HARD Track Overview in TREC 2003: High Accuracy Retrieval from Documents , 2003, TREC.

[17]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[18]  Hideo Joho,et al.  Hierarchical presentation of expansion terms , 2002, SAC '02.

[19]  Ian Ruthven,et al.  Re-examining the potential effectiveness of interactive query expansion , 2003, SIGIR.

[20]  Stephen E. Robertson,et al.  Microsoft Cambridge at TREC 13: Web and Hard Tracks , 2004, TREC.

[21]  Qi Li,et al.  UMass at TREC 2003: HARD and QA , 2003, TREC.

[22]  Bei Yu,et al.  A cross-collection mixture model for comparative text mining , 2004, KDD.

[23]  Xin Fu,et al.  Elicitation of term relevance feedback: an investigation of term source and context , 2006, SIGIR.

[24]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[25]  Bracha Shapira,et al.  Evaluation of the real and perceived value of automatic and interactive query expansion , 2004, SIGIR '04.