New constraints on the CH4 vertical profile in Uranus and Neptune from Herschel observations

Dedicated line observations of CH4 rotational lines performed with Herschel/PACS and HIFI in 2009‐2011 provide new inferences of the mean methane profile in the upper tropospheres and stratospheres of Uranus and Neptune. At Uranus, CH4 is found to be near saturation, with a 9 10 4 tropopause/lower stratosphere mole fraction. This is nominally six times larger than inferred from Spitzer in 2007, although reconciliation may be possible if the CH4 abundance decreases sharply from 100 to 2 mbar. This unexpected situation might reflect heterogeneous conditions in Uranus’ stratosphere, with local CH4 depletions and heating associated with downwelling motions. Higher CH4 abundances compared to values inferred under solstitial conditions by Voyager in 1989 suggest that atmospheric mixing is e ectively subdued at high latitudes and/or is time-variable. At Neptune, the mid-stratosphere CH4 abundance is (1:15 0:10) 10 3 , in agreement with earlier determinations and indicative of either leakage through a warmer polar region or upwelling at low or middle latitudes. On both planets, spatially resolved observations of temperature and methane in the stratosphere are needed to further identify the physical processes at work.

[1]  H. Hammel,et al.  Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations , 2014, 1502.06480.

[2]  G. Orton,et al.  Neptune’s global circulation deduced from multi-wavelength observations , 2014 .

[3]  G. Orton,et al.  Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere , 2014, 1407.2118.

[4]  G. Orton,et al.  Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere , 2014, 1407.2120.

[5]  M. J. Griffin,et al.  Calibration of the Herschel SPIRE Fourier Transform Spectrometer , 2014, 1403.1107.

[6]  G. Orton,et al.  Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003–2007 , 2013, 1311.7570.

[7]  T. Encrenaz,et al.  The first submillimeter observation of CO in the stratosphere of Uranus , 2013, 1311.2458.

[8]  G. Orton,et al.  The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations , 2013, 1301.5781.

[9]  P. Hartogh,et al.  The abundance, vertical distribution and origin of H2O in Titan's atmosphere: Herschel observations and photochemical modelling , 2012 .

[10]  H. Hammel,et al.  Post-equinox dynamics and polar cloud structure on Uranus ☆ , 2012, 1503.00592.

[11]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[12]  Daniel T. Jaffe,et al.  A spatially resolved high spectral resolution study of Neptune’s stratosphere , 2011 .

[13]  Miguel de Val-Borro,et al.  First results of Herschel-PACS observations of Neptune , 2010, 1006.0114.

[14]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[15]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[16]  T. Encrenaz,et al.  Neptune's atmospheric composition from AKARI infrared spectroscopy , 2010, 1003.5571.

[17]  Nicolas Thomas,et al.  Water and Related Chemistry in the Solar System. A Guaranteed Time Key Programme for Herschel , 2009 .

[18]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[19]  V. Boudon,et al.  The high-resolution far-infrared spectrum of methane at the SOLEIL synchrotron , 2009 .

[20]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[21]  Richard C. Puetter,et al.  Evidence for methane escape and strong seasonal and dynamical perturbations of Neptune's atmospheric temperatures , 2007 .

[22]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[23]  Matthew Joseph Griffin,et al.  Neptune's far-infrared spectrum from the ISO long-wavelength and short-wavelength spectrometers , 2003 .

[24]  H. Hammel,et al.  Clouds, hazes, and the stratospheric methane abundance in Neptune. , 1994, Icarus.

[25]  William E. Blass,et al.  Thermal spectroscopy of Neptune: the stratospheric temperature, hydrocarbon abundances, and isotopic ratios , 1992 .

[26]  F. M. Flasar,et al.  Thermal structure and dynamics of Neptune's atmosphere from Voyager measurements , 1991 .

[27]  B. Bézard,et al.  Hydrocarbons in Neptune's stratosphere from Voyager infrared observations , 1991 .

[28]  Roger V. Yelle,et al.  The far ultraviolet reflection spectrum of Uranus - Results from the Voyager encounter , 1989 .

[29]  G. F. Lindal,et al.  The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2 , 1987 .