A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

[1]  Matt Landreman,et al.  New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..

[2]  Nanbu,et al.  Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Matt Landreman,et al.  Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal , 2012, 1207.1795.

[4]  Leslie Greengard,et al.  Fast elliptic solvers in cylindrical coordinates and the Coulomb collision operator , 2011, J. Comput. Phys..

[5]  Don S. Lemons,et al.  Small-angle Coulomb collision model for particle-in-cell simulations , 2009, J. Comput. Phys..

[6]  Vincent Chan,et al.  Numerical solution of neoclassical ion transport using the Fokker–Planck operator for Coulomb collisions , 2011 .

[7]  Nagiza F. Samatova,et al.  Compressed ion temperature gradient turbulence in diverted tokamak edge , 2009 .

[8]  S. C. Jardin,et al.  Numerical calculation of neoclassical distribution functions and current profiles in low collisionality, axisymmetric plasmas , 2012 .

[9]  George H. Miley,et al.  An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .

[10]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[11]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .

[12]  Edward W. Larsen,et al.  Discretization methods for one-dimensional Fokker-Planck operators , 1985 .

[13]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[14]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[15]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[16]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[17]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[18]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[19]  T. Takizuka,et al.  A binary collision model for plasma simulation with a particle code , 1977 .

[20]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[21]  Luc Mieussens,et al.  Fast implicit schemes for the Fokker–Planck–Landau equation , 2004 .

[22]  Fred L. Hinton Simulating Coulomb collisions in a magnetized plasma , 2008 .

[23]  J. E. Menard,et al.  Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry , 2012 .

[24]  Choong-Seock Chang,et al.  Numerical study of neoclassical plasma pedestal in a tokamak geometry , 2004 .

[25]  K. Nanbu,et al.  THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS IN PLASMAS , 1997 .

[26]  Luc Mieussens,et al.  Implicit Schemes for the Fokker-Planck-Landau Equation , 2005, SIAM J. Sci. Comput..

[27]  Jeff M. Candy,et al.  Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .

[28]  Toshio Fukushima,et al.  Precise and fast computation of the general complete elliptic integral of the second kind , 2011, Math. Comput..

[29]  F. Hinton,et al.  Effect of impurity particles on the finite-aspect ratio neoclassical ion thermal conductivity in a tokamak , 1986 .

[30]  Stéphane Cordier,et al.  Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .

[31]  B Li,et al.  Gyrokinetic Fokker-Planck collision operator. , 2011, Physical review letters.