A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation
暂无分享,去创建一个
[1] Matt Landreman,et al. New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..
[2] Nanbu,et al. Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[3] Matt Landreman,et al. Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal , 2012, 1207.1795.
[4] Leslie Greengard,et al. Fast elliptic solvers in cylindrical coordinates and the Coulomb collision operator , 2011, J. Comput. Phys..
[5] Don S. Lemons,et al. Small-angle Coulomb collision model for particle-in-cell simulations , 2009, J. Comput. Phys..
[6] Vincent Chan,et al. Numerical solution of neoclassical ion transport using the Fokker–Planck operator for Coulomb collisions , 2011 .
[7] Nagiza F. Samatova,et al. Compressed ion temperature gradient turbulence in diverted tokamak edge , 2009 .
[8] S. C. Jardin,et al. Numerical calculation of neoclassical distribution functions and current profiles in low collisionality, axisymmetric plasmas , 2012 .
[9] George H. Miley,et al. An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .
[10] Choong-Seock Chang,et al. Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .
[11] D. A. Knoll,et al. An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .
[12] Edward W. Larsen,et al. Discretization methods for one-dimensional Fokker-Planck operators , 1985 .
[13] Charles K. Birdsall,et al. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .
[14] J. L. Luxon,et al. A design retrospective of the DIII-D tokamak , 2002 .
[15] J. S. Chang,et al. A practical difference scheme for Fokker-Planck equations☆ , 1970 .
[16] Y. Berezin,et al. Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .
[17] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[18] F. Hinton,et al. Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .
[19] T. Takizuka,et al. A binary collision model for plasma simulation with a particle code , 1977 .
[20] E. M. Epperlein,et al. Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .
[21] Luc Mieussens,et al. Fast implicit schemes for the Fokker–Planck–Landau equation , 2004 .
[22] Fred L. Hinton. Simulating Coulomb collisions in a magnetized plasma , 2008 .
[23] J. E. Menard,et al. Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry , 2012 .
[24] Choong-Seock Chang,et al. Numerical study of neoclassical plasma pedestal in a tokamak geometry , 2004 .
[25] K. Nanbu,et al. THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS IN PLASMAS , 1997 .
[26] Luc Mieussens,et al. Implicit Schemes for the Fokker-Planck-Landau Equation , 2005, SIAM J. Sci. Comput..
[27] Jeff M. Candy,et al. Full linearized Fokker–Planck collisions in neoclassical transport simulations , 2011 .
[28] Toshio Fukushima,et al. Precise and fast computation of the general complete elliptic integral of the second kind , 2011, Math. Comput..
[29] F. Hinton,et al. Effect of impurity particles on the finite-aspect ratio neoclassical ion thermal conductivity in a tokamak , 1986 .
[30] Stéphane Cordier,et al. Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .
[31] B Li,et al. Gyrokinetic Fokker-Planck collision operator. , 2011, Physical review letters.