Sensitivity Analysis for the 2D Navier–Stokes Equations with Applications to Continuous Data Assimilation

We rigorously prove the well-posedness of the formal sensitivity equations with respect to the Reynolds number corresponding to the 2D incompressible Navier-Stokes equations. Moreover, we do so by showing a sequence of difference quotients converges to the unique solution of the sensitivity equations for both the 2D Navier-Stokes equations and the related data assimilation equations, which utilize the continuous data assimilation algorithm proposed by Azouani, Olson, and Titi. As a result, this method of proof provides uniform bounds on difference quotients, demonstrating parameter recovery algorithms that change parameters as the system evolves will not blow-up. We also note that this appears to be the first such rigorous proof of global existence and uniqueness to strong or weak solutions to the sensitivity equations for the 2D Navier-Stokes equations (in the natural case of zero initial data), and that they can be obtained as a limit of difference quotients with respect to the Reynolds number.

[1]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[2]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[3]  Единый подход к построению определяющих форм для двумерной системы уравнений Навье - Стокса: случай общих интерполирующих операторов@@@A unified approach to determining forms for the 2D Navier - Stokes equations - the general interpolants case , 2014 .

[4]  A. Mazzino,et al.  Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging , 2018, Physical Review Fluids.

[5]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model , 2015, 1502.00964.

[6]  D. Hamby A review of techniques for parameter sensitivity analysis of environmental models , 1994, Environmental monitoring and assessment.

[7]  Edriss S. Titi,et al.  Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..

[8]  W. K. Anderson,et al.  Sensitivity Analysis for Navier-Stokes Equations on Unstructured Meshes Using Complex Variables , 2001 .

[9]  Edriss S. Titi,et al.  Continuous data assimilation for the 2D Bénard convection through velocity measurements alone , 2014, 1410.1767.

[10]  Adam Larios,et al.  Parameter Recovery for the 2 Dimensional Navier-Stokes Equations via Continuous Data Assimilation , 2020, SIAM J. Sci. Comput..

[11]  Edriss S. Titi,et al.  Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.

[12]  Hakima Bessaih,et al.  Continuous data assimilation with stochastically noisy data , 2014, 1406.1533.

[13]  F. Pianosi,et al.  Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox , 2019, MethodsX.

[14]  J. Burns,et al.  A PDE Sensitivity Equation Method for Optimal Aerodynamic Design , 1997 .

[15]  Guillaume Houzeaux,et al.  Implementation of discrete adjoint method for parameter sensitivity analysis in chemically reacting flows , 2016 .

[16]  Leo G. Rebholz,et al.  Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations , 2020, Electronic Research Archive.

[17]  Yuan Pei,et al.  Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields , 2017, Asymptot. Anal..

[18]  O. Knio,et al.  Efficient dynamical downscaling of general circulation models using continuous data assimilation , 2019, Quarterly Journal of the Royal Meteorological Society.

[19]  Edriss S. Titi,et al.  Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone , 2016, J. Nonlinear Sci..

[20]  Edriss S. Titi,et al.  Data Assimilation algorithm for 3D B\'enard convection in porous media employing only temperature measurements , 2015, 1506.08678.

[21]  Kyle Williams,et al.  Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy Management , 2018, ArXiv.

[22]  L. Biferale,et al.  Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows , 2019, Physical Review X.

[23]  Emine Celik,et al.  Spectral Filtering of Interpolant Observables for a Discrete-in-Time Downscaling Data Assimilation Algorithm , 2018, SIAM J. Appl. Dyn. Syst..

[24]  Edriss S. Titi,et al.  A Computational Study of a Data Assimilation Algorithm for the Two-dimensional Navier-Stokes Equations , 2015, 1505.01234.

[25]  Monika Neda,et al.  A sensitivity study of the Navier-Stokes-α model , 2017, Comput. Math. Appl..

[26]  Leo G. Rebholz,et al.  Simple and efficient continuous data assimilation of evolution equations via algebraic nudging , 2018, Numerical Methods for Partial Differential Equations.

[27]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[28]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[29]  Traian Iliescu,et al.  Continuous data assimilation reduced order models of fluid flow , 2019, Computer Methods in Applied Mechanics and Engineering.

[30]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[31]  Lisa Gayle Stanley,et al.  Design Sensitivity Analysis , 2002 .

[32]  L. Rebholz,et al.  Global in Time Analysis and Sensitivity Analysis for the Reduced NS-α Model of Incompressible Flow , 2017 .

[33]  Francesca Pianosi,et al.  Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox , 2019, MethodsX.

[34]  Oh-Hyun Rho,et al.  AERODYNAMIC SENSITIVITY ANALYSIS FOR NAVIER-STOKES EQUATIONS , 1999 .

[35]  Dennis W. Brewer The Differentiability with Respect to a Parameter of the Solution of a Linear Abstract Cauchy Problem , 1982 .

[36]  Edriss S. Titi,et al.  A Discrete Data Assimilation Scheme for the Solutions of the Two-Dimensional Navier-Stokes Equations and Their Statistics , 2016, SIAM J. Appl. Dyn. Syst..

[37]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[38]  M. U. Altaf,et al.  Downscaling the 2D Bénard convection equations using continuous data assimilation , 2015, Computational Geosciences.

[39]  Hantaek Bae Navier-Stokes equations , 1992 .

[40]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[41]  I. Kukavica,et al.  Existence and Regularity of Invariant Measures for the Three Dimensional Stochastic Primitive Equations , 2013, 1311.4204.

[42]  M. Jolly,et al.  Continuous Data Assimilation with Blurred-in-Time Measurements of the Surface Quasi-Geostrophic Equation , 2018, Chinese Annals of Mathematics, Series B.

[43]  Miguel A. Fernández,et al.  Sensitivity analysis for an incompressible aeroelastic system , 2002 .

[44]  Edriss S. Titi,et al.  Continuous data assimilation for the three-dimensional Navier-Stokes-α model , 2016, Asymptot. Anal..

[45]  E. Titi,et al.  On the Charney Conjecture of Data Assimilation Employing Temperature Measurements Alone: The Paradigm of 3D Planetary Geostrophic Model , 2016, 1608.04770.

[46]  Eric J. Nielsen,et al.  Sensitivity analysis for the Navier-Stokes equations on unstructured meshes using complex variables , 1999 .

[47]  Edriss S. Titi,et al.  Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations , 2017 .

[48]  Lyle G. Clark,et al.  Sensitivity analysis for a class of evolution equations , 1977 .

[49]  Roland Grappin,et al.  Lyapunov exponents and the dimension of periodic incompressible Navier-Stokes flows - Numerical measurements , 1991 .

[50]  Edriss S. Titi,et al.  Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field , 2015, 1504.05978.

[51]  Edriss S. Titi,et al.  A data assimilation algorithm: the paradigm of the 3D Leray-alpha model of turbulence , 2017, 1702.01506.

[52]  Yuan Pei Continuous data assimilation for the 3D primitive equations of the ocean , 2018, Communications on Pure & Applied Analysis.

[53]  N. Masmoudi Remarks about the Inviscid Limit of the Navier–Stokes System , 2007 .

[54]  Edriss S. Titi,et al.  A Data Assimilation Algorithm for the Subcritical Surface Quasi-Geostrophic Equation , 2016, 1607.08574.

[55]  Edriss S. Titi,et al.  Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study , 2015, 1506.03709.

[56]  Faranak Pahlevani Sensitivity computations of eddy viscosity models with an application in drag computation , 2006 .

[57]  Adam Larios,et al.  Continuous Data Assimilation with a Moving Cluster of Data Points for a Reaction Diffusion Equation: A Computational Study , 2018, Communications in Computational Physics.

[58]  On two dimensional incompressible fluids , 1986 .

[59]  Cecilia F. Mondaini,et al.  Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates , 2019, IMA Journal of Numerical Analysis.

[60]  Animikh Biswas,et al.  Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations , 2017 .

[61]  Edriss S. Titi,et al.  Uniform in Time Error Estimates for a Finite Element Method Applied to a Downscaling Data Assimilation Algorithm for the Navier-Stokes Equations , 2018, SIAM J. Numer. Anal..

[62]  A. Farhat,et al.  Data Assimilation in Large Prandtl Rayleigh-Bénard Convection from Thermal Measurements , 2019, SIAM J. Appl. Dyn. Syst..

[63]  Lisa G. Davis,et al.  PARAMETER SENSITIVITY OF AN EDDY VISCOSITY MODEL: ANALYSIS, COMPUTATION AND ITS APPLICATION TO QUANTIFYING MODEL RELIABILITY , 2013 .

[64]  Edriss S. Titi,et al.  Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm , 2018, SIAM J. Numer. Anal..

[65]  Joshua Hudson,et al.  Numerical efficacy study of data assimilation for the 2D magnetohydrodynamic equations , 2019, Journal of Computational Dynamics.

[66]  Jiajia Waters,et al.  Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow , 2016, J. Num. Math..

[67]  Peter Constantin,et al.  Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations , 1985 .

[68]  Leo G. Rebholz,et al.  Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[69]  A. M. Stuart,et al.  Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation , 2012, 1210.1594.

[70]  Lisa G. Stanley,et al.  Design Sensitivity Analysis: Computational Issues on Sensitivity Equation Methods , 2002 .

[71]  V. Vemuri,et al.  On a new approach to parameter estimation by the method of sensitivity functions , 1979 .

[72]  Yuan Pei,et al.  Nonlinear continuous data assimilation , 2017, Evolution Equations and Control Theory.

[73]  Edriss S. Titi,et al.  Assimilation of Nearly Turbulent Rayleigh–Bénard Flow Through Vorticity or Local Circulation Measurements: A Computational Study , 2017, Journal of Scientific Computing.