Hyperspectral Image Classification via Low-Rank and Sparse Representation With Spectral Consistency Constraint

In this letter, a low-rank and sparse representation classifier with a spectral consistency constraint (LRSRC-SCC) is proposed. Different from the SRC that represents samples individually, LRSRC-SCC reconstructs samples jointly and is able to capture the local and global structures simultaneously. In this proposed classifier, an adaptive spectral constraint is imposed on both the low-rank and sparse terms so as to better reveal the data structure and enhance its discriminative power. In addition, the alternating direction method is introduced to solve the underlying minimization problem, in which, more importantly, the subobjective function associated with the low-rank term is optimized based on the rank equivalence between a matrix and its Gram matrix, resulting in a closed-form solution. Finally, LRSRC-SCC is extended to LRSRC-SCCE for fully exploiting the spatial information. Experimental results on two hyperspectral data sets demonstrate that the proposed LRSRC-SCC and LRSRC-SCCE methods outperform some state-of-the-art methods.

[1]  Jie Zhang,et al.  Structure-Constrained Low-Rank Representation , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Trac D. Tran,et al.  Hyperspectral Image Classification Using Dictionary-Based Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Bo Du,et al.  Joint Sparse Representation and Multitask Learning for Hyperspectral Target Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Sen Jia,et al.  Gabor Feature-Based Collaborative Representation for Hyperspectral Imagery Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[6]  L. Mirsky,et al.  An introduction to linear algebra , 1957, Mathematical Gazette.

[7]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[10]  Trac D. Tran,et al.  Hyperspectral Image Classification via Kernel Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Fuchun Sun,et al.  A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using a Few Labeled Samples , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Saurabh Prasad,et al.  Class-Dependent Sparse Representation Classifier for Robust Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[14]  Liangpei Zhang,et al.  A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Jinhui Tang,et al.  Constructing a Nonnegative Low-Rank and Sparse Graph With Data-Adaptive Features , 2014, IEEE Transactions on Image Processing.

[16]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.