Numerical solution of a model for brain cancer progression after therapy
暂无分享,去创建一个
Barbara Zubik-Kowal | Zdzislaw Jackiewicz | Yang Kuang | Craig J. Thalhauser | Y. Kuang | Z. Jackiewicz | B. Zubik-Kowal
[1] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[2] H. Byrne,et al. Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia , 2001, Bulletin of mathematical biology.
[3] E. Kostelich,et al. Virtual glioblastoma: growth, migration and treatment in a three‐dimensional mathematical model , 2009, Cell proliferation.
[4] J. Murray,et al. A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.
[5] M. Chamberlain. Treatment options for glioblastoma. , 2006, Neurosurgical focus.
[6] M. Berens,et al. Migration and invasion in brain neoplasms , 2001, Current neurology and neuroscience reports.
[7] Tanja Woyke,et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. , 2005, Neoplasia.
[8] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[9] M. Westphal,et al. Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[10] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[11] J. Royds,et al. Hypoxia and reoxygenation: A pressure for mutant p53 cell selection and tumour progression , 1999, Bulletin of mathematical biology.
[12] Yang Kuang,et al. Explicit Separation of Growth and Motility in a New Tumor Cord Model , 2009, Bulletin of mathematical biology.
[13] Michael E. Berens,et al. Molecular Mechanisms of Glioma Cell Migration and Invasion , 2004, Journal of Neuro-Oncology.
[14] M. Chamberlain. Treatment options for glioblastoma : state of the art 3 , 2006 .
[15] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Contents , 2007 .