Fluctuations of interlacing sequences

In a series of works published in the 1990-s, Kerov put forth various applications of the circle of ideas centred at the Markov moment problem to the limiting shape of random continual diagrams arising in representation theory and spectral theory. We demonstrate on several examples that his approach is also adequate to study the fluctuations about the limiting shape. In the random matrix setting, we compare two continual diagrams: one is constructed from the eigenvalues of the matrix and the critical points of its characteristic polynomial, whereas the second one is constructed from the eigenvalues of the matrix and those of its principal submatrix. The fluctuations of the latter diagram were recently studied by Erd\H{o}s and Schr\"oder; we discuss the fluctuations of the former, and compare the two limiting processes. For Plancherel random partitions, the Markov correspondence establishes the equivalence between Kerov's central limit theorem for the Young diagram and the Ivanov--Olshanski central limit theorem for the transition measure. We outline a combinatorial proof of the latter, and compare the limiting process with the ones of random matrices.

[1]  Jianfeng Yao,et al.  On the convergence of the spectral empirical process of Wigner matrices , 2005 .

[2]  Gaussian fluctuations for random matrices with correlated entries , 2006, math-ph/0607028.

[3]  R. Speicher,et al.  Orthogonal polynomials and fluctuations of random matrices , 2005, math/0503169.

[4]  A. Okounkov Random matrices and ramdom permutations , 1999, math/9903176.

[5]  V. Gorin,et al.  Fluctuations of particle systems determined by Schur generating functions , 2016, Advances in Mathematics.

[6]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[7]  S. Kerov,et al.  Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis , 2003 .

[8]  A. Vershik,et al.  Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group , 1985 .

[9]  M. G. Kreĭn,et al.  Some questions in the theory of moments , 1962 .

[10]  P. Yuditskii,et al.  On the L1 extremal problem for entire functions , 2014, J. Approx. Theory.

[11]  Alexander Moll Random partitions and the quantum Benjamin-Ono hierarchy , 2015, 1508.03063.

[12]  C. H. Joyner,et al.  Spectral statistics of Bernoulli matrix ensembles—a random walk approach (I) , 2015, 1501.04907.

[13]  S. Sodin On the critical points of random matrix characteristic polynomials and of the Riemann $\xi$-function , 2016, 1611.10037.

[14]  L. Erdős,et al.  Fluctuations of Rectangular Young Diagrams of Interlacing Wigner Eigenvalues , 2016 .

[15]  L. Pastur,et al.  Non-Gaussian Limiting Laws for the Entries of Regular Functions of the Wigner Matrices , 2011, 1103.2345.

[16]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[17]  Philippe Biane,et al.  Representations of Symmetric Groups and Free Probability , 1998 .

[18]  S. Sodin,et al.  A Limit Theorem for Stochastically Decaying Partitions at the Edge , 2016, 1604.01104.

[19]  Alexey Bufetov,et al.  Kerov's interlacing sequences and random matrices , 2012, 1211.1507.

[20]  B. Logan,et al.  A Variational Problem for Random Young Tableaux , 1977 .

[21]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[22]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[23]  Pierre-Loïc Méliot,et al.  Kerov's central limit theorem for Schur-Weyl measures of parameter 1/2 , 2010, 1009.4034.

[24]  G. Olshanski,et al.  Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams , 2003, math/0304010.

[25]  Mariya Shcherbina,et al.  Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices , 2011, 1101.3249.

[26]  Y. Ihara On discrete subgroups of the two by two projective linear group over p-adic fields , 1966 .

[27]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[28]  The Pseudoanalytic Extension , 1993 .

[29]  H. Bass THE IHARA-SELBERG ZETA FUNCTION OF A TREE LATTICE , 1992 .

[30]  A. Vershik,et al.  A new approach to representation theory of symmetric groups , 1996 .

[31]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[32]  S. Kerov Transition probabilities for continual young diagrams and the Markov moment problem , 1993 .

[33]  Uzy Smilansky,et al.  Trace formulae and spectral statistics for discrete Laplacians on regular graphs (I) , 2009, 1003.1445.

[34]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[35]  Spectral and Dynamical Properties of Certain Random Jacobi Matrices with Growing Parameters , 2007, 0708.0670.

[36]  Random discrete Schrödinger operators from random matrix theory , 2007 .

[37]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[38]  S. Sodin Several applications of the moment method in random matrix theory , 2014, 1406.3410.

[39]  P. Yuditskii Full length article: On the L 1 extremal problem for entire functions , 2014 .

[40]  Uzy Smilansky,et al.  Periodic Walks on Large Regular Graphs and Random Matrix Theory , 2014, Exp. Math..

[41]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[42]  Percy Wong,et al.  Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices , 2012, 1210.5666.

[43]  L. Pastur,et al.  Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices , 2009 .

[44]  L. Pastur Spectra of Random Self Adjoint Operators , 1973 .

[45]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[46]  Fluctuations of functions of Wigner matrices , 2016 .

[47]  David Renfrew,et al.  Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices , 2011, 1103.1170.

[48]  Bernard Helffer,et al.  Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .