A memetic particle swarm optimization algorithm for multimodal optimization problems

In this paper, a new memetic algorithm, which combines PSO and local search technique, is proposed for mul-timodal optimization problems. In the investigated algorithm, a local PSO model is used to disperse the individuals into different sub-regions, an adaptive local search method is employed to refine the quality of individuals and a triggered re-initialization scheme is introduced to enhance the algorithm's capacity of solving functions with numerous optima. Experimental results based on a set of benchmark functions show that the proposed memetic algorithm is a good optimizer in multimodal optimization domain.

[1]  Bo Liu,et al.  An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Jing Tang,et al.  Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems , 2006, Soft Comput..

[3]  Kit Yan Chan,et al.  Polynomial modeling for time-varying systems based on a particle swarm optimization algorithm , 2011, Inf. Sci..

[4]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[5]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[6]  Wei Chu,et al.  Handling boundary constraints for particle swarm optimization in high-dimensional search space , 2011, Inf. Sci..

[7]  Thomas Jansen,et al.  On the Analysis of Dynamic Restart Strategies for Evolutionary Algorithms , 2002, PPSN.

[8]  Shengxiang Yang,et al.  Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima , 2012, Inf. Sci..

[9]  Ling Qing,et al.  Crowding clustering genetic algorithm for multimodal function optimization , 2006 .

[10]  Qing Ling,et al.  Crowding clustering genetic algorithm for multimodal function optimization , 2008, Appl. Soft Comput..

[11]  Michael R. Lyu,et al.  A novel adaptive sequential niche technique for multimodal function optimization , 2006, Neurocomputing.

[12]  Yu Wang,et al.  Self-adaptive learning based particle swarm optimization , 2011, Inf. Sci..

[13]  Ying-wu Chen,et al.  An intelligent genetic algorithm designed for global optimization of multi-minima functions , 2006, Appl. Math. Comput..

[14]  Nedim Tutkun,et al.  Optimization of multimodal continuous functions using a new crossover for the real-coded genetic algorithms , 2009, Expert Syst. Appl..

[15]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[16]  Saïd Salhi,et al.  A hybrid algorithm for identifying global and local minima when optimizing functions with many minima , 2004, Eur. J. Oper. Res..

[17]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[19]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[20]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[21]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[22]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[23]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[24]  Bu-Sung Lee,et al.  Memetic algorithm using multi-surrogates for computationally expensive optimization problems , 2007, Soft Comput..

[25]  Carlos A. Coello Coello,et al.  A Memetic PSO Algorithm for Scalar Optimization Problems , 2007, 2007 IEEE Swarm Intelligence Symposium.

[26]  Grzegorz Ziomek,et al.  Random search optimization approach for highly multi-modal nonlinear problems , 2005, Adv. Eng. Softw..

[27]  Carlos Cotta,et al.  On the Hybridization of Memetic Algorithms With Branch-and-Bound Techniques , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Michael N. Vrahatis,et al.  Memetic particle swarm optimization , 2007, Ann. Oper. Res..

[29]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[30]  Bir Bhanu,et al.  Object detection in multi-modal images using genetic programming , 2004, Appl. Soft Comput..

[31]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[32]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[34]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[35]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[36]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[37]  Hung-Chih Chiu,et al.  Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions , 2011, Inf. Sci..

[38]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[39]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[40]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  M. Duran Toksari Minimizing the multimodal functions with Ant Colony Optimization approach , 2009, Expert Syst. Appl..

[42]  Andrew Lim,et al.  Example-based learning particle swarm optimization for continuous optimization , 2012, Information Sciences.

[43]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .