A nonlocal model with strain-based damage

A thermodynamically consistent formulation of nonlocal damage in the framework of the internal variable theories of inelastic behaviours of associative type is presented. The damage behaviour is defined in the strain space and the effective stress turns out to be additively splitted in the actual stress and in the nonlocal counterpart of the relaxation stress related to damage phenomena. An important advantage of models with strain-based loading functions and explicit damage evolution laws is that the stress corresponding to a given strain can be evaluated directly without any need for solving a nonlinear system of equations. A mixed nonlocal variational formulation in the complete set of state variables is presented and is specialized to a mixed two-field variational formulation. Hence a finite element procedure for the analysis of the elastic model with nonlocal damage is established on the basis of the proposed two-field variational formulation. Two examples concerning a one-dimensional bar in simple tension and a two-dimensional notched plate are addressed. No mesh dependence or boundary effects are apparent.

[1]  Jean Lemaitre,et al.  Coupled elasto-plasticity and damage constitutive equations , 1985 .

[2]  Antonio Huerta,et al.  An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model , 2006 .

[3]  M. Brünig Numerical analysis of anisotropic ductile continuum damage , 2003 .

[4]  C. L. Chow,et al.  A finite element analysis of continuum damage mechanics for ductile fracture , 1988, International Journal of Fracture.

[5]  Matti Ristinmaa,et al.  FE-formulation of a nonlocal plasticity theory , 1996 .

[6]  Zdenek P. Bazant,et al.  Nonlocal Damage Theory Based on Micromechanics of Crack Interactions , 1994 .

[7]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[8]  Norman Jones,et al.  On the elastic modulus degradation in continuum damage mechanics , 2000 .

[9]  P. Steinmann,et al.  Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity , 2001 .

[10]  G. Romano New results in subdifferential calculus with applications to convex optimization , 1995 .

[11]  B. D. Reddy,et al.  An internal variable theory of elastoplasticity based on the maximum plastic work inequality , 1990 .

[12]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[13]  Guy T. Houlsby Principles of hyperplasticity , 2006 .

[14]  Milan Jirásek,et al.  Non‐local damage model based on displacement averaging , 2005 .

[15]  Milan Jirásek,et al.  Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories , 2009 .

[16]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[17]  René Chambon,et al.  Localization criteria for non‐linear constitutive equations of geomaterials , 2000 .

[18]  Morton E. Gurtin,et al.  A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations , 2005 .

[19]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[20]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[21]  Ulrich Häussler-Combe,et al.  Formulation and numerical implementation of a constitutive law for concrete with strain-based damage and plasticity , 2008 .

[22]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[23]  Milan Jirásek,et al.  Localization properties of strain-softening gradient plasticity models. Part II: Theories with gradients of internal variables , 2009 .

[24]  Michael Brünig,et al.  A ductile damage criterion at various stress triaxialities , 2008 .

[25]  L. H. Poh,et al.  Gradient-enhanced softening material models , 2009 .

[26]  C. Polizzotto Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions , 2007 .

[27]  Michael Brã¼nig AN ANISOTROPIC CONTINUUMDAMAGE MODEL: THEORY AND NUMERICAL ANALYSES , 2004 .

[28]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[29]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[30]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[31]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[32]  Franco Algostino,et al.  Scienza delle costruzioni , 2006 .

[33]  G. Borino,et al.  A thermodynamically consistent nonlocal formulation for damaging materials , 2002 .

[34]  Samuel Forest,et al.  Elastoviscoplastic constitutive frameworks for generalized continua , 2003 .

[35]  Jiann-Wen Ju,et al.  ISOTROPIC AND ANISOTROPIC DAMAGE VARIABLES IN CONTINUUM DAMAGE MECHANICS , 1990 .

[36]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[37]  Diego J. Celentano,et al.  Experimental and numerical characterization of damage evolution in steels , 2007 .

[38]  R. Toupin Elastic materials with couple-stresses , 1962 .

[39]  A. Cemal Eringen,et al.  On nonlocal plasticity , 1981 .

[40]  Wei Hua Tai,et al.  A new microvoid-damage model for ductile fracture , 1986 .

[41]  A. C. Eringen,et al.  Mechanics of Micromorphic Continua , 1968 .

[42]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[43]  Dieter Dinkler,et al.  3D-FE-Analysis of CT-specimens including viscoplastic material behavior and nonlocal damage , 2009 .

[44]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[45]  Paul Steinmann,et al.  A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage , 2005 .

[46]  H. Kushwaha,et al.  Finite element formulation of a new nonlocal damage model , 2008 .

[47]  Mark Kachanov,et al.  Continuum Model of Medium with Cracks , 1980 .

[48]  M. Gurtin On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients , 2003 .

[49]  Michael Brünig,et al.  Nonlocal continuum theory of anisotropically damaged metals , 2005 .

[50]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[51]  A. Eringen,et al.  LINEAR THEORY OF MICROPOLAR ELASTICITY , 1965 .

[52]  F. Parrinello,et al.  A symmetric nonlocal damage theory , 2003 .

[53]  A. Combescure,et al.  A thermodynamic method for the construction of a cohesive law from a nonlocal damage model , 2009 .

[54]  S. Nemat-Nasser Rate-independent finite-deformation elastoplasticity: a new explicit constitutive algorithm , 1991 .

[55]  M. Brünig,et al.  Nonlocal large deformation and localization behavior of metals , 2001 .

[56]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[57]  George Z. Voyiadjis,et al.  A plasticity-damage theory for large deformation of solids—I. Theoretical formulation , 1992 .

[58]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[59]  Zdenek P. Bazant,et al.  Why Continuum Damage is Nonlocal: Micromechanics Arguments , 1991 .

[60]  Milan Jirásek,et al.  Comparison of integral-type nonlocal plasticity models for strain-softening materials , 2003 .

[61]  Morton E. Gurtin,et al.  A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin , 2004 .

[62]  Mark F. Horstemeyer,et al.  Damage and stress state influence on the Bauschinger effect in aluminum alloys , 2007 .

[63]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[64]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[65]  G. Romano,et al.  An internal variable theory of inelastic behaviour derived from the uniaxial rigid-perfectly plastic law , 1993 .

[66]  Paul Steinmann,et al.  A framework for geometrically nonlinear continuum damage mechanics , 1998 .

[67]  Dominic G.B. Edelen,et al.  On the thermodynamics of systems with nonlocality , 1971 .

[68]  Rhj Ron Peerlings,et al.  Gradient‐enhanced damage modelling of concrete fracture , 1998 .

[69]  Michael Brünig,et al.  An anisotropic ductile damage model based on irreversible thermodynamics , 2003 .

[70]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[71]  Milan Jirásek,et al.  Consistent tangent stiffness for nonlocal damage models , 2002 .

[72]  Wolfgang Ehlers,et al.  On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials , 1998 .

[73]  Gilles Pijaudier-Cabot,et al.  Strain localization and bifurcation in a nonlocal continuum , 1993 .

[74]  B. Audoin,et al.  On internal variables in anisotropic damage , 1991 .

[75]  J. Pamin Gradient plasticity and damage models: a short comparison , 2005 .

[76]  Jerzy Pamin,et al.  Gradient plasticity in numerical simulation of concrete cracking , 1996 .

[77]  P. Steinmann A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity , 1994 .