Subgradient Based Outer Approximation for Mixed Integer Second Order Cone Programming

This paper deals with outer approximation based approaches to solve mixed integer second order cone programs. Thereby the outer approximation is based on subgradients of the second order cone constraints. Using strong duality of the subproblems that are solved during the algorithm, we are able to determine subgradients satisfying the KKT optimality conditions. This enables us to extend convergence results valid for continuously differentiable mixed integer nonlinear problems to subdifferentiable constraint functions. Furthermore, we present a version of the branch-and-bound based outer approximation that converges when relaxing the convergence assumption that every SOCP satisfies the Slater constraint qualification. We give numerical results for some application problems showing the performance of our approach.

[1]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[2]  J. Soukup,et al.  Set of test problems for the minimum length connection networks , 1973, SMAP.

[3]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[4]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[5]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[6]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[7]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[8]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[9]  Nelson Maculan,et al.  A New Relaxation in Conic Form for the Euclidean Steiner Problem in ℜ , 2001, RAIRO Oper. Res..

[10]  Arkadi Nemirovski,et al.  On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..

[11]  Sanjay Mehrotra,et al.  Generating Convex Polynomial Inequalities for Mixed 0–1 Programs , 2002, J. Glob. Optim..

[12]  Christian Kanzow,et al.  Theorie und Numerik restringierter Optimierungsaufgaben , 2002 .

[13]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[14]  Mehmet Tolga Çezik,et al.  Cuts for mixed 0-1 conic programming , 2005, Math. Program..

[15]  Alper Atamtürk,et al.  Cuts for Conic Mixed-Integer Programming , 2007, IPCO.

[16]  Jeff T. Linderoth,et al.  FilMINT: An Outer-Approximation-Based Solver for Nonlinear Mixed Integer Programs , 2008 .

[17]  George L. Nemhauser,et al.  A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs , 2008, INFORMS J. Comput..

[18]  S. Ulbrich,et al.  MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .

[19]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[20]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[21]  Alper Atamtürk,et al.  Conic mixed-integer rounding cuts , 2009, Math. Program..

[22]  Alper Atamtürk,et al.  Lifting for conic mixed-integer programming , 2011, Math. Program..

[23]  Jeff T. Linderoth,et al.  Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .