A Minimal Model of a Single-Reed Instrument Producing Quasi-Periodic Sounds

Summary Single-reed instruments can produce multiphonic sounds when they generate quasi-periodic oscillations. The aim of this article is to identify a minimal model of a single reed-instrument producing quasi-periodic oscillations. To better understand the influence of model parameters on the production of quasi-periodic regimes, the mapping between parameters and quasi-periodic regimes is explicitly identified using a support vector machine (SVM) classifier. SVMs enable the construction of boundaries between quasi-periodic and periodic regimes that are explicitly defined in terms of the parameters. Results and conclusions obtained from the numerical model are compared to published experiments related to t he the production of quasi-periodic oscillations with an alto saxophone. This qualitative comparison highlights the influence of key parameters on the production of multiphonic sounds.

[1]  Christophe Vergez,et al.  Nonlinear modes of clarinet-like musical instruments , 2009, 0903.3353.

[2]  Christophe Vergez,et al.  Simulation of single reed instruments oscilations based on modal decomposition of bore and reed dynamics , 2007, 0705.2803.

[3]  N. Fletcher Sound production by organ flue pipes , 1976 .

[4]  John W Coltman Jet offset, harmonic content, and warble in the flute. , 2006, The Journal of the Acoustical Society of America.

[5]  John T. Scott,et al.  Fundamentals of musical acoustics , 1976 .

[6]  Christophe Vergez,et al.  Oscillation threshold of a clarinet model: a numerical continuation approach. , 2012, The Journal of the Acoustical Society of America.

[7]  Jean-Pierre Dalmont,et al.  Some aspects of tuning and clean intonation in reed instruments , 1995 .

[8]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[9]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[10]  D H Keefe,et al.  Correlation dimension of woodwind multiphonic tones. , 1991, The Journal of the Acoustical Society of America.

[11]  A. Chaigne,et al.  Acoustique des instruments de musique , 2008 .

[12]  Nello Cristianini,et al.  Support Vector Machines and Kernel Methods: The New Generation of Learning Machines , 2002, AI Mag..

[13]  N. Fletcher,et al.  Music Producers.(Book Reviews: The Physics of Musical Instruments.) , 1991 .

[14]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[15]  Christophe Vergez,et al.  A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities , 2008, 0808.3839.

[16]  Vincent Debut,et al.  Analysis of the self-sustained oscillations of a clarinet as a Vander Pol oscillator , 2004 .

[17]  A. Basudhar,et al.  An improved adaptive sampling scheme for the construction of explicit boundaries , 2010 .

[18]  Samy Missoum,et al.  A Sampling-Based Approach for Probabilistic Design with Random Fields , 2008 .

[19]  Neville H Fletcher,et al.  Harmonic generation in organ pipes, recorders, and flutes , 1980 .

[20]  Vincent Gibiat Phase space representations of acoustical musical signals , 1988 .

[21]  Christophe Vergez,et al.  Flute-like musical instruments: A toy model investigated through numerical continuation , 2012, 1207.7136.

[22]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[23]  Christophe Vergez,et al.  A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities , 2013 .

[24]  Jean-Pierre Dalmont,et al.  Nonlinear characteristics of single-reed instruments: quasistatic volume flow and reed opening measurements. , 2003, The Journal of the Acoustical Society of America.

[25]  Christophe Vergez,et al.  Explicit mapping of acoustic regimes for wind instruments , 2014, 1402.1750.

[26]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[27]  李幼升,et al.  Ph , 1989 .

[28]  C. J. Nederveen,et al.  Pitch and level changes in organ pipes due to wall resonances , 2004 .

[29]  Hideki Kawahara,et al.  YIN, a fundamental frequency estimator for speech and music. , 2002, The Journal of the Acoustical Society of America.

[30]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[31]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[32]  Ines Gloeckner,et al.  Order Within Chaos Towards A Deterministic Approach To Turbulence , 2016 .

[33]  Vincent Debut,et al.  MoReeSC: A Framework for the Simulation and Analysis of Sound Production in Reed and Brass Instruments , 2014 .

[34]  Masakazu Iwaki,et al.  Nonlinear vibrations in the air column of a clarinet artificially blown , 1993 .

[35]  John Backus,et al.  Multiphonic tones in the woodwind instruments , 1977 .

[36]  Samy Missoum,et al.  Reliability-Based Design Optimization of Nonlinear Aeroelasticity Problems , 2010 .