Analyzing Argumentative Discourse Units in Online Interactions

Argument mining of online interactions is in its infancy. One reason is the lack of annotated corpora in this genre. To make progress, we need to develop a principled and scalable way of determining which portions of texts are argumentative and what is the nature of argumentation. We propose a two-tiered approach to achieve this goal and report on several initial studies to assess its potential.

[1]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[2]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[3]  D. Maynard How children start arguments , 1985, Language in Society.

[4]  Robin Cohen,et al.  Analyzing the Structure of Argumentative Discourse , 1987, CL.

[5]  S. Jackson,et al.  Reconstructing Argumentative Discourse , 1993 .

[6]  I. Hutchby Confrontation Talk: Arguments, Asymmetries, and Power on Talk Radio , 1996 .

[7]  Mari Ostendorf,et al.  Detection Of Agreement vs. Disagreement In Meetings: Training With Unlabeled Data , 2003, NAACL.

[8]  Ramakrishnan Srikant,et al.  Mining newsgroups using networks arising from social behavior , 2003, WWW '03.

[9]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[10]  Julia Hirschberg,et al.  Identifying Agreement and Disagreement in Conversational Speech: Use of Bayesian Networks to Model Pragmatic Dependencies , 2004, ACL.

[11]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[12]  Chris Reed,et al.  Araucaria: Software for Argument Analysis, Diagramming and Representation , 2004, Int. J. Artif. Intell. Tools.

[13]  Klaus krippendorff,et al.  Measuring the Reliability of Qualitative Text Analysis Data , 2004 .

[14]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[15]  Claire Grover,et al.  Automatic legal text summarisation: experiments with summary structuring , 2005, ICAIL '05.

[16]  Melissa D. Begg,et al.  Joseph L. Fleiss , 2005 .

[17]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[18]  Marie-Francine Moens,et al.  Language Resources for Studying Argument , 2008, LREC.

[19]  Swapna Somasundaran,et al.  Discourse Level Opinion Relations: An Annotation Study , 2008, SIGDIAL Workshop.

[20]  Ron Artstein Inter-Coder Agreement for Computational Linguistics , 2008 .

[21]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[22]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[23]  Simone Teufel,et al.  Towards Domain-Independent Argumentative Zoning: Evidence from Chemistry and Computational Linguistics , 2009, EMNLP.

[24]  Simone Teufel Towards Discipline-Independent Argumentative Zoning : Evidence from Chemistry and Computational Linguistics , 2009 .

[25]  Raymond H. Putra,et al.  Support or Oppose? Classifying Positions in Online Debates from Reply Activities and Opinion Expressions , 2010, COLING.

[26]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[27]  Dale E. Brashers,et al.  Extending the Conversational Argument Coding Scheme: Argument Categories, Units, and Coding Procedures , 2010 .

[28]  Marie-Francine Moens,et al.  Approaches to Text Mining Arguments from Legal Cases , 2010, Semantic Processing of Legal Texts.

[29]  Chris Callison-Burch,et al.  Cheap Facts and Counter-Facts , 2010, Mturk@HLT-NAACL.

[30]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[31]  William B. Dolan,et al.  Collecting Highly Parallel Data for Paraphrase Evaluation , 2011, ACL.

[32]  Jonathan T. Morgan,et al.  Annotating Social Acts: Authority Claims and Alignment Moves in Wikipedia Talk Pages , 2011 .

[33]  Owen Rambow,et al.  Identifying Justifications in Written Dialogs by Classifying Text as Argumentative , 2011, Int. J. Semantic Comput..

[34]  M. Walker,et al.  How can you say such things?!?: Recognizing Disagreement in Informal Political Argument , 2011 .

[35]  Marilyn A. Walker,et al.  That is your evidence?: Classifying stance in online political debate , 2012, Decis. Support Syst..

[36]  Jacob Andreas,et al.  Annotating Agreement and Disagreement in Threaded Discussion , 2012, LREC.

[37]  Matt Post,et al.  Constructing Parallel Corpora for Six Indian Languages via Crowdsourcing , 2012, WMT@NAACL-HLT.

[38]  Trevor J. M. Bench-Capon,et al.  Semi-Automated Argumentative Analysis of Online Product Reviews , 2012, COMMA.

[39]  Paul Thomas,et al.  Unifying Local and Global Agreement and Disagreement Classification in Online Debates , 2012, WASSA@ACL.

[40]  Amita Misra,et al.  Topic Independent Identification of Agreement and Disagreement in Social Media Dialogue , 2013, SIGDIAL Conference.

[41]  Serena Villata,et al.  A natural language bipolar argumentation approach to support users in online debate interactions† , 2013, Argument Comput..

[42]  Arjun Mukherjee,et al.  Discovering User Interactions in Ideological Discussions , 2013, ACL.

[43]  Manfred Stede,et al.  Ranking the annotators: An agreement study on argumentation structure , 2013, LAW@ACL.

[44]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..