Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors

[1]  J. Campisi,et al.  Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation , 2004, Journal of Cell Science.

[2]  Adrian A Canutescu,et al.  Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. , 2005, Developmental cell.

[3]  T. Lange,et al.  Significant Role for p16INK4a in p53-Independent Telomere-Directed Senescence , 2004, Current Biology.

[4]  M. Mattson,et al.  Cellular lifespan and senescence signaling in embryonic stem cells , 2004, Aging cell.

[5]  P. Klatt,et al.  Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. , 2004, Genes & development.

[6]  N. Sharpless,et al.  Ink4a/Arf expression is a biomarker of aging. , 2004, The Journal of clinical investigation.

[7]  Jichun Chen Senescence and functional failure in hematopoietic stem cells. , 2004, Experimental hematology.

[8]  G. Peters,et al.  Contribution of p16(INK4a) to replicative senescence of human fibroblasts. , 2004, Experimental cell research.

[9]  S. Jackson,et al.  Functional links between telomeres and proteins of the DNA-damage response. , 2004, Genes & development.

[10]  J. Shay,et al.  Does a sentinel or a subset of short telomeres determine replicative senescence? , 2004, Molecular biology of the cell.

[11]  T. Jensen,et al.  Adult human mesenchymal stem cell as a target for neoplastic transformation , 2004, Oncogene.

[12]  N. Barzilai,et al.  The paradox of the insulin/IGF-1 signaling pathway in longevity , 2004, Mechanisms of Ageing and Development.

[13]  John M Sedivy,et al.  Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). , 2004, Molecular cell.

[14]  D. Galloway,et al.  Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence , 2004, Molecular and Cellular Biology.

[15]  M. Blasco,et al.  Long-term molecular and cellular stability of human neural stem cell lines. , 2004, Experimental cell research.

[16]  R. DePinho,et al.  Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. , 2004, Cancer cell.

[17]  S. Lowe,et al.  Executing Cell Senescence , 2004, Cell cycle.

[18]  K. Mohammad,et al.  Modulation of mammalian life span by the short isoform of p53. , 2004, Genes & development.

[19]  Sean J Morrison,et al.  Bmi1, stem cells, and senescence regulation. , 2004, The Journal of clinical investigation.

[20]  T. Lange,et al.  Significant Role for p 16 INK 4 a in p 53-Independent Telomere-Directed Senescence , 2004 .

[21]  R. Weinberg,et al.  When cells get stressed: an integrative view of cellular senescence. , 2004, The Journal of clinical investigation.

[22]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[23]  E. Medrano,et al.  The emerging role of epigenetics in cellular and organismal aging , 2003, Experimental Gerontology.

[24]  Qin M. Chen,et al.  Novel mechanisms of sublethal oxidant toxicity: induction of premature senescence in human fibroblasts confers tumor promoter activity. , 2003, Experimental cell research.

[25]  S. Melov,et al.  Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts , 2003, Aging cell.

[26]  K. Collins,et al.  Telomere maintenance and disease , 2003, The Lancet.

[27]  T. Lange,et al.  DNA Damage Foci at Dysfunctional Telomeres , 2003, Current Biology.

[28]  Masashi Narita,et al.  Reversal of human cellular senescence: roles of the p53 and p16 pathways , 2003, The EMBO journal.

[29]  T. Jacks,et al.  Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry , 2003, Nature.

[30]  S. Lowe,et al.  Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence , 2003, Cell.

[31]  I. Roninson,et al.  Tumor cell senescence in cancer treatment. , 2003, Cancer research.

[32]  C. J. Collins,et al.  Involvement of the INK4a/Arf gene locus in senescence , 2003, Aging cell.

[33]  S. Melov,et al.  Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts , 2003, Nature Cell Biology.

[34]  Frederick Grinnell,et al.  Fibroblast biology in three-dimensional collagen matrices. , 2003, Trends in cell biology.

[35]  Judith Campisi,et al.  Cancer and ageing: rival demons? , 2003, Nature Reviews Cancer.

[36]  Manel Esteller,et al.  Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. , 2003, Cancer research.

[37]  Stanley N Cohen,et al.  Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Hoeijmakers,et al.  Aging and Genome Maintenance: Lessons from the Mouse? , 2003, Science.

[39]  C. Finch,et al.  Evolutionary Medicine: From Dwarf Model Systems to Healthy Centenarians? , 2003, Science.

[40]  S. Lowe,et al.  Tumor suppression by Ink4a-Arf: progress and puzzles. , 2003, Current opinion in genetics & development.

[41]  J. Campisi Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes , 2003, Experimental Gerontology.

[42]  Goberdhan P Dimri,et al.  Control of the Replicative Life Span of Human Fibroblasts by p16 and the Polycomb Protein Bmi-1 , 2003, Molecular and Cellular Biology.

[43]  K. Chew,et al.  Methylation of p 16 INK 4 a Promoters Occurs in Vivo in Histologically Normal Human Mammary Epithelia 1 , 2003 .

[44]  G. Peters,et al.  Biallelic Mutations in p16INK4a Confer Resistance to Ras- and Ets-Induced Senescence in Human Diploid Fibroblasts , 2002, Molecular and Cellular Biology.

[45]  P. Klatt,et al.  'Super p53' mice exhibit enhanced DNA damage response, are tumor resistant and age normally , 2002, The EMBO journal.

[46]  J. Greally,et al.  Senescence and epigenetic dysregulation in cancer. , 2002, The international journal of biochemistry & cell biology.

[47]  J. Campisi,et al.  Cancer and aging: a model for the cancer promoting effects of the aging stroma. , 2002, The international journal of biochemistry & cell biology.

[48]  P. Cole,et al.  Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. , 2002, Cancer research.

[49]  A. Smogorzewska,et al.  Different telomere damage signaling pathways in human and mouse cells , 2002, The EMBO journal.

[50]  F. McCormick,et al.  The RB and p53 pathways in cancer. , 2002, Cancer cell.

[51]  W. Hahn,et al.  A Two-Stage, p16INK4A- and p53-Dependent Keratinocyte Senescence Mechanism That Limits Replicative Potential Independent of Telomere Status , 2002, Molecular and Cellular Biology.

[52]  J. Shay,et al.  Historical claims and current interpretations of replicative aging , 2002, Nature Biotechnology.

[53]  G. Peters,et al.  INK4a‐deficient human diploid fibroblasts are resistant to RAS‐induced senescence , 2002, The EMBO journal.

[54]  I. Roninson Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. , 2002, Cancer letters.

[55]  K. Dorshkind Multilineage development from adult bone marrow cells , 2002, Nature Immunology.

[56]  Hartmut Geiger,et al.  The aging of lympho-hematopoietic stem cells , 2002, Nature Immunology.

[57]  D. Dunson,et al.  Mutational fingerprints of aging. , 2002, Nucleic acids research.

[58]  Stephen N. Jones,et al.  p53 mutant mice that display early ageing-associated phenotypes , 2002, Nature.

[59]  Jeffrey M. Trimarchi,et al.  Transcription: Sibling rivalry in the E2F family , 2002, Nature Reviews Molecular Cell Biology.

[60]  Antony M. Carr,et al.  The evolution of diverse biological responses to DNA damage: insights from yeast and p53 , 2001, Nature Cell Biology.

[61]  J. Campisi Cellular senescence as a tumor-suppressor mechanism. , 2001, Trends in cell biology.

[62]  O. Pereira-smith,et al.  MRG15 Activates the B-myb Promoter through Formation of a Nuclear Complex with the Retinoblastoma Protein and the Novel Protein PAM14* , 2001, The Journal of Biological Chemistry.

[63]  J. Campisi,et al.  Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Carrasco,et al.  Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis , 2001, Nature.

[65]  Goberdhan P Dimri,et al.  Regulation of cellular senescence by p53. , 2001, European journal of biochemistry.

[66]  D. Kaufman,et al.  Multilineage Differentiation from Human Embryonic Stem Cell Lines , 2001, Stem cells.

[67]  C. Boulanger,et al.  Reducing mammary cancer risk through premature stem cell senescence , 2001, Oncogene.

[68]  G. Peters,et al.  Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence , 2001, Nature.

[69]  J. Shay,et al.  Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. , 2001, Genes & development.

[70]  T. Tlsty,et al.  Know thy neighbor: stromal cells can contribute oncogenic signals. , 2001, Current opinion in genetics & development.

[71]  Thea D. Tlsty,et al.  Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes , 2001, Nature.

[72]  W. Hahn,et al.  Genes involved in senescence and immortalization. , 2000, Current opinion in cell biology.

[73]  Steven N. Austad,et al.  Why do we age? , 2000, Nature.

[74]  J. Shay,et al.  Hayflick, his limit, and cellular ageing , 2000, Nature Reviews Molecular Cell Biology.

[75]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[76]  S. Lowe,et al.  PML is induced by oncogenic ras and promotes premature senescence. , 2000, Genes & development.

[77]  M J Bissell,et al.  The influence of the microenvironment on the malignant phenotype. , 2000, Molecular medicine today.

[78]  Pier Paolo Pandolfi,et al.  PML regulates p53 acetylation and premature senescence induced by oncogenic Ras , 2000, Nature.

[79]  M. Serrano,et al.  Tumor suppressors and oncogenes in cellular senescence☆ , 2000, Experimental Gerontology.

[80]  K Watanabe,et al.  Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. DePinho,et al.  A critical role for telomeres in suppressing and facilitating carcinogenesis. , 2000, Current opinion in genetics & development.

[82]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[83]  I. Roninson,et al.  Effects of p 21 Waf 1 / Cip 1 / Sdi 1 on cellular gene expression : Implications for carcinogenesis , senescence , and age-related diseases , 2000 .

[84]  D. Shelton,et al.  Microarray analysis of replicative senescence , 1999, Current Biology.

[85]  V. Ferrans,et al.  Ras Proteins Induce Senescence by Altering the Intracellular Levels of Reactive Oxygen Species* , 1999, The Journal of Biological Chemistry.

[86]  Sandy Chang,et al.  Longevity, Stress Response, and Cancer in Aging Telomerase-Deficient Mice , 1999, Cell.

[87]  V. Dulic,et al.  Differential Roles for Cyclin-Dependent Kinase Inhibitors p21 and p16 in the Mechanisms of Senescence and Differentiation in Human Fibroblasts , 1999, Molecular and Cellular Biology.

[88]  R. DePinho,et al.  The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus , 1999, Nature.

[89]  A. Brenner,et al.  Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation , 1998, Oncogene.

[90]  G. Peters,et al.  Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts , 1998, Current Biology.

[91]  D. Wynford‐Thomas,et al.  Reinitiation of DNA Synthesis and Cell Division in Senescent Human Fibroblasts by Microinjection of Anti-p53 Antibodies , 1998, Molecular and Cellular Biology.

[92]  Wenyi Wei,et al.  Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. , 1997, Science.

[93]  F. Zindy,et al.  Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging , 1997, Oncogene.

[94]  Bert Vogelstein,et al.  Gatekeepers and caretakers , 1997, Nature.

[95]  J. Zweier,et al.  Mitogenic Signaling Mediated by Oxidants in Ras-Transformed Fibroblasts , 1997, Science.

[96]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[97]  K. Kinzler,et al.  Cancer-susceptibility genes. Gatekeepers and caretakers. , 1997, Nature.

[98]  G. Hannon,et al.  Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[99]  R. Tarone,et al.  Frequent clones of p53-mutated keratinocytes in normal human skin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[100]  C. Reznikoff,et al.  Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. , 1996, Cancer research.

[101]  G. Peters,et al.  Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence , 1996, Molecular and cellular biology.

[102]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[103]  G. Wahl,et al.  DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. , 1994, Genes & development.

[104]  L. Donehower,et al.  In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. , 1993, Oncogene.

[105]  B. Howard,et al.  Relative mitogenic activities of wild-type and retinoblastoma binding-defective SV40 T antigens in serum-deprived and senescent human diploid fibroblasts. , 1993, Oncogene.

[106]  J Salvage,et al.  A matter of life and death. , 1981, Nursing times.