Mechanical unfolding intermediates in titin modules

[1]  K. Schulten,et al.  Steered molecular dynamics simulations of force‐induced protein domain unfolding , 1999, Proteins.

[2]  E. Evans,et al.  Strength of a weak bond connecting flexible polymer chains. , 1999, Biophysical journal.

[3]  J. Clarke,et al.  Mechanical and chemical unfolding of a single protein: a comparison. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Rief,et al.  Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. , 1999, Journal of molecular biology.

[5]  Yuan-Ping Pang,et al.  Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring , 1998, Nature.

[6]  J. Lefèvre,et al.  The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. , 1998, Journal of molecular biology.

[7]  Matthias Rief,et al.  Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility , 1998 .

[8]  K. Schulten,et al.  Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. , 1998, Biophysical journal.

[9]  W. Linke,et al.  Characterizing titin's I-band Ig domain region as an entropic spring. , 1998, Journal of cell science.

[10]  Andres F. Oberhauser,et al.  The molecular elasticity of the extracellular matrix protein tenascin , 1998, Nature.

[11]  Siegfried Labeit,et al.  Titin Extensibility In Situ: Entropic Elasticity of Permanently Folded and Permanently Unfolded Molecular Segments , 1998, The Journal of cell biology.

[12]  H. Granzier,et al.  Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. , 1997, Biophysical journal.

[13]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[14]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[15]  H. Erickson,et al.  Stretching Single Protein Molecules: Titin Is a Weird Spring , 1997, Science.

[16]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[17]  K. Schulten,et al.  Molecular dynamics study of unbinding of the avidin-biotin complex. , 1997, Biophysical journal.

[18]  W. Linke,et al.  The Giant Protein Titin: Emerging Roles in Physiology and Pathophysiology , 1997 .

[19]  K. Schulten,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[20]  M. Gautel,et al.  A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series , 1996, FEBS letters.

[21]  A. Pastore,et al.  The elastic I-band region of titin is assembled in a "modular" fashion by weakly interacting Ig-like domains. , 1996, Journal of molecular biology.

[22]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[23]  A. Pastore,et al.  The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. , 1995, Biophysical journal.

[24]  Siegfried Labeit,et al.  Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity , 1995, Science.

[25]  S. Martin,et al.  Titin folding energy and elasticity , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[27]  S. Smith,et al.  Complete unfolding of the titin molecule under external force. , 1998, Journal of structural biology.

[28]  H. Granzier,et al.  Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. , 1996, Biophysical journal.

[29]  Matthias Rief,et al.  Sensing specific molecular interactions with the atomic force microscope , 1995 .

[30]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .