Untangling GABAergic wiring in the cortical microcircuit

[1]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[2]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[3]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[4]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[5]  J. Rubenstein,et al.  GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior , 2013, Nature Neuroscience.

[6]  Hannah Monyer,et al.  The long and short of GABAergic neurons , 2013, Current Opinion in Neurobiology.

[7]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[8]  Matthew E Larkum,et al.  The yin and yang of cortical layer 1 , 2013, Nature Neuroscience.

[9]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[10]  E. Kuramoto,et al.  Cell Type-Specific Inhibitory Inputs to Dendritic and Somatic Compartments of Parvalbumin-Expressing Neocortical Interneuron , 2013, The Journal of Neuroscience.

[11]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[12]  P. Somogyi,et al.  Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo , 2012, The Journal of Neuroscience.

[13]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.

[14]  Elly Nedivi,et al.  Clustered Dynamics of Inhibitory Synapses and Dendritic Spines in the Adult Neocortex , 2012, Neuron.

[15]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[16]  David A Lewis,et al.  Cortical basket cell dysfunction in schizophrenia , 2012, The Journal of physiology.

[17]  David A. Lewis,et al.  Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia , 2012, Trends in Neurosciences.

[18]  Rafael Yuste,et al.  State-Dependent Function of Neocortical Chandelier Cells , 2011, The Journal of Neuroscience.

[19]  KouichiC . Nakamura,et al.  Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex. , 2011, Cerebral cortex.

[20]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[21]  Masaki Nomura,et al.  Conserved properties of dendritic trees in four cortical interneuron subtypes , 2011, Scientific reports.

[22]  Y. Bozzi,et al.  The role of GABAergic system in neurodevelopmental disorders: a focus on autism and epilepsy. , 2011, International journal of physiology, pathophysiology and pharmacology.

[23]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[24]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[25]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[26]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[27]  G. Tamás,et al.  Differential distribution of KCC2 along the axo‐somato‐dendritic axis of hippocampal principal cells , 2010, The European journal of neuroscience.

[28]  S. Sesack,et al.  Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex , 2010, Neuroscience.

[29]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[30]  D. Lewis,et al.  Alterations of Cortical GABA Neurons and Network Oscillations in Schizophrenia , 2010, Current psychiatry reports.

[31]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[32]  Y. Dan,et al.  An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons , 2009, Proceedings of the National Academy of Sciences.

[33]  Tomoki Fukai,et al.  Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements , 2009, Nature Neuroscience.

[34]  R. Yuste,et al.  Depolarizing effect of neocortical chandelier neurons , 2022 .

[35]  Demian Battaglia,et al.  Classification of NPY-Expressing Neocortical Interneurons , 2009, The Journal of Neuroscience.

[36]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[37]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[38]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[39]  Y. Kawaguchi,et al.  Two distinct activity patterns of fast-spiking interneurons during neocortical UP states , 2008, Proceedings of the National Academy of Sciences.

[40]  Y. Yanagawa,et al.  Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. , 2008, Cerebral cortex.

[41]  Kathleen S Rockland,et al.  Long‐distance corticocortical GABAergic neurons in the adult monkey white and gray matter , 2007, The Journal of comparative neurology.

[42]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[43]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[44]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[45]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[46]  Satoru Kondo,et al.  Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents , 2007, The Journal of Neuroscience.

[47]  I. Soltesz,et al.  Postsynaptic origin of CB1‐dependent tonic inhibition of GABA release at cholecystokinin‐positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus , 2007, The Journal of physiology.

[48]  Yasuo Kawaguchi,et al.  Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. , 2006, Cerebral cortex.

[49]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[50]  W. Singer,et al.  Gap Junctions among Dendrites of Cortical GABAergic Neurons Establish a Dense and Widespread Intercolumnar Network , 2006, The Journal of Neuroscience.

[51]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[52]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[53]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[54]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[55]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[56]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[57]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[58]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[59]  M. Merzenich,et al.  Model of autism: increased ratio of excitation/inhibition in key neural systems , 2003, Genes, brain, and behavior.

[60]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[61]  D. Prince,et al.  Functional Autaptic Neurotransmission in Fast-Spiking Interneurons: A Novel Form of Feedback Inhibition in the Neocortex , 2003, The Journal of Neuroscience.

[62]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[64]  G. Knott,et al.  Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice , 2002, Neuron.

[65]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[66]  Y. Kawaguchi,et al.  Distinct Firing Patterns of Neuronal Subtypes in Cortical Synchronized Activities , 2001, The Journal of Neuroscience.

[67]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[68]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[69]  E. Welker,et al.  K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons , 1999, The Journal of Neuroscience.

[70]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[71]  Ken Mackie,et al.  Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons , 1999, The Journal of Neuroscience.

[72]  D. Lewis,et al.  Parvalbumin‐immunoreactive axon terminals in macaque monkey and human prefrontal cortex: Laminar, regional, and target specificity of type I and type II synapses , 1999, The Journal of comparative neurology.

[73]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[74]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[75]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[76]  D. O'Dowd,et al.  Differential Expression of K4-AP Currents and Kv3.1 Potassium Channel Transcripts in Cortical Neurons that Develop Distinct Firing Phenotypes , 1997, The Journal of Neuroscience.

[77]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[78]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  Y. Kubota,et al.  Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex , 1994, Brain Research.

[80]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[81]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[82]  P. Goldman-Rakic,et al.  The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortex , 1992, The Journal of comparative neurology.

[83]  P. Somogyi,et al.  Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. , 1990, Brain : a journal of neurology.

[84]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[85]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[86]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.