Target tracking for moving robots using object-based visual attention

Visual tracking is a quite challenging issue for a moving robot due to the appearance changes of both the background and targets, large variation of motion, partial or full occlusion and so on. However, humans are capable to cope with those difficulties to achieve satisfactory tracking performance. Thus this paper presents a biologically-inspired method of visual tracking for moving robots by using object-based visual attention mechanism. This tracking method consists of four modules: pre-attentive segmentation, top-down attentional biasing, post-attentive completion processing and online learning of the target model. Experimental results in natural and cluttered scenes are shown to validate this general and robust tracking method.

[1]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Azriel Rosenfeld,et al.  Hierarchical Image Analysis Using Irregular Tessellations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Simone Frintrop,et al.  Most salient region tracking , 2009, 2009 IEEE International Conference on Robotics and Automation.

[4]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[6]  Yuan Li,et al.  Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Lifespans , 2007, CVPR.

[7]  George K. I. Mann,et al.  Modeling of top-down influences on object-based visual attention for robots , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[8]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[9]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[10]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[11]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Dan Schonfeld,et al.  A complete system for head tracking using motion-based particle filter and randomly perturbed active contour , 2005, IS&T/SPIE Electronic Imaging.

[14]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[16]  George K. I. Mann,et al.  An object-based visual attention model for robots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  George K. I. Mann,et al.  An autonomous visual perception model for robots using object-based attention mechanism , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[18]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Yuan F. Zheng,et al.  Sequential Particle Generation for Visual Tracking , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[20]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Stanley T. Birchfield,et al.  Elliptical head tracking using intensity gradients and color histograms , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[22]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Robert T. Collins,et al.  Spatial Divide and Conquer with Motion Cues for Tracking through Clutter , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  A. Norman Redlich,et al.  Redundancy Reduction as a Strategy for Unsupervised Learning , 1993, Neural Computation.

[25]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.