On the completeness and constructiveness of parametric characterizations to vector optimization problems

SummaryMotivated by recent reviews of characterizations of optimal solutions to vector optimization problems and by applications to decision support systems, this paper presents a methodological approach to comparing such characterizations. After specifying attributes of constructiveness, alternative classes of characterizations are reviewed. Characterization theorems are quoted or presented in more detail in cases that supplement those given in recent reviews. One of alternative classes of characterizations — by aspiration levels and order-consistent achievement functions — is discussed in more detail. An impossibility theorem of complete and robustly computable characterization of efficient (as opposed to weakly or properly efficient) solutions to vector optimization problems is presented.ZusammenfassungAngeregt durch neuere Übersichten der Charakterisierung von optimalen Lösungen von Vektoroptimierungsproblemen und durch Anwendungen auf Entscheidungsunterstützungssysteme wird in diesem Beitrag ein methodischer Ansatz zum Vergleich solcher Charakterisierungen dargestellt. Nach der Spezifizierung von Attributen der Konstruktivität werden alternative Klassen von Charakterisierungen betrachtet. Charakterisierungstheoreme werden entweder zitiert oder, in Ergänzung neuerer Übersichten, dargestellt. Eine der alternativen Klassen der Charakterisierungen wird näher diskutiert. Ein Unmöglichkeitstheorem einer vollständigen und robust berechenbaren Charakterisierung von effizienten (im Gegensatz zu schwach oder streng effizienten) Lösungen der Vektoroptimierungsprobleme wird dargelegt.

[1]  J. Nash THE BARGAINING PROBLEM , 1950, Classics in Game Theory.

[2]  Howard Raiffa,et al.  Games And Decisions , 1958 .

[3]  Abraham Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[4]  V. S. Mikhalevich,et al.  Sequential optimization algorithms and their application. Part I , 1965 .

[5]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[6]  W. Dinkelbach Über einen Lösungsansatz zum Vektormaximumproblem , 1971 .

[7]  G. Fandel Optimale Entscheidung bei mehrfacher Zielsetzung , 1972 .

[8]  J. Dyer Interactive Goal Programming , 1972 .

[9]  G. Leitmann,et al.  Compromise Solutions, Domination Structures, and Salukvadze’s Solution , 1974 .

[10]  Joseph G. Ecker,et al.  Finding efficient points for linear multiple objective programs , 1975, Math. Program..

[11]  Yacov Y. Haimes,et al.  Multiobjective optimization in water resources systems : the surrogate worth trade-off method , 1975 .

[12]  Andrzej P. Wierzbicki Penalty Methods in Solving Optimization Problems with Vector Performance Criteria, II , 1975 .

[13]  E. Kalai,et al.  OTHER SOLUTIONS TO NASH'S BARGAINING PROBLEM , 1975 .

[14]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[15]  V. Bowman On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .

[16]  Andrzej P. Wierzbick Basic properties of scalarizmg functionals for multiobjective optimization , 1977 .

[17]  A. Charnes,et al.  Goal programming and multiple objective optimizations: Part 1 , 1977 .

[18]  H. P. Benson,et al.  Existence of efficient solutions for vector maximization problems , 1978 .

[19]  John Casti,et al.  Vector-valued optimization problems in control theory , 1979 .

[20]  W. Orchard-Hays,et al.  An Implementation of the Reference Point Approach for Multiobjective Optimization , 1980 .

[21]  Abu S.M. Masud,et al.  Interactive Sequential Goal Programming , 1981 .

[22]  A. Wierzbicki Multiobjective Trajectory Optimization and Model Semiregularization , 1981 .

[23]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[24]  M. I. Henig Proper efficiency with respect to cones , 1982 .

[25]  Manfred Grauer,et al.  The Reference Point Optimization Approach - Methods of Efficient Implementation , 1982 .

[26]  W. B. Gearhart Characterization of properly efficient solutions by generalized scalarization methods , 1983 .

[27]  James P. Ignizio,et al.  Generalized goal programming An overview , 1983, Comput. Oper. Res..

[28]  Andrzej P. Wierzbicki,et al.  Negotiation and Mediation in Conflicts I.: The Role of Mathematical Approaches and Methods , 1983 .

[29]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[30]  Johannes Jahn,et al.  Scalarization in vector optimization , 1984, Math. Program..

[31]  Masatoshi Sakawa,et al.  Interactive fuzzy decisionmaking for multiobjective nonlinear programming problems , 1984 .

[32]  Johannes Jahn,et al.  Some characterizations of the optimal solutions of a vector optimization problem , 1985 .

[33]  Hirotaka Nakayama On the Components in Interactive Multiobjective Programming Methods , 1985 .

[34]  Andrzej P. Wierzbicki,et al.  Negotiation and Mediation in Conflicts: II. Plural Rationality and Interactive Decision Processes , 1985 .

[35]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[36]  T. Gal On Efficient Sets in Vector Maximum Problems — A Brief Survey , 1986 .

[37]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .