Curvelet processing and imaging: adaptive ground roll removal

In this paper we present examples of ground roll attenuation for synthetic and real data gathers by using Contourlet and Curvelet transforms. These non-separable wavelet transforms are locoalized both (x,t)and (k,f)-domains and allow for adaptive seperation of signal and ground roll. Both linear and non-linear filtering are discussed using the unique properties of these basis that allow for simultaneous localization in the both domains. Eventhough, the linear filtering techniques are encouraging the true added value of these basis-function techniques becomes apparent when we use these decompositions to adaptively substract modeled ground roll from data using a non-linear thesholding procedure. We show real and synthetic examples and the results suggest that these directional-selective basis functions provide a usefull tool for the removal of coherent noise such as ground roll.